Mapping ignorance: 300 years of collecting flowering plants in Africa

Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2016-09, Vol.25 (9), p.1085-1096
Hauptverfasser: Stropp, Juliana, Ladle, Richard J., M. Malhado, Ana C., Hortal, Joaquín, Gaffuri, Julien, H. Temperley, William, Olav Skøien, Jon, Mayaux, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096
container_issue 9
container_start_page 1085
container_title Global ecology and biogeography
container_volume 25
creator Stropp, Juliana
Ladle, Richard J.
M. Malhado, Ana C.
Hortal, Joaquín
Gaffuri, Julien
H. Temperley, William
Olav Skøien, Jon
Mayaux, Philippe
description Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. This study aims to answer three questions: (1) How reliable are species-occurrence data for flowering plants in Africa? (2) Where and when did botanical sampling occur in the past 300 years? (3) How complete are plant inventories for Africa? Location: Africa. Methods: By filtering a publicly available dataset containing 3.5 million records of flowering plants, we obtained 934,676 herbarium specimens with complete information regarding species name, date and location of collection. Based on these specimens, we estimated inventory completeness for sampling units (SUs) of 25 km × 25 km. We then tested whether the spatial distribution of well-sampled SUs was correlated with temporal parameters of botanical sampling. Finally, we determined whether inventory completeness in individual countries was related to old or recently collected specimens. Results: Thirty-one per cent of SUs contained at least one specimen, whereas only 2.4% of SUs contained a sufficient number of specimens to reliably estimate inventory completeness. We found that the location of poorly sampled areas remained almost unchanged for half a century. Moreover, there was pronounced temporal bias towards old specimens in South Africa, the country that holds half of the available data for the continent. There, high inventory completeness stems from specimens collected several decades ago. Main conclusions: Despite the increasing availability of species occurrence data for Africa, broad-scale biogeographical research is still compromised by the uncertain quality and spatial and temporal biases of such data. To avoid erroneous inferences, the quality and biases in species-occurrence data should be critically evaluated and quantified prior to use. To this end, we propose a quantification method based on inventory completeness using easily accessible species-occurrence data.
doi_str_mv 10.1111/geb.12468
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815701140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44133657</jstor_id><sourcerecordid>44133657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4258-9a6a86693bc971197885e65ece0afb32f02a412d98e5279df7391cdd2cf501e63</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhYMo-Fz4A4SAG11E550Zd7XUKr42Fd0N0-mdkppm4kxK7b83NdqF4N3cC-c7l8NJkmOMLnA7l1MYX2DChNxK9jATIpOEyu3NTd52k_0YZwghzrjYSwaPpq6LapoW08oHU1m4SilC6QpMiKl3qfVlCbZZI670Swjrqy5N1cS0qNKeC4U1h8mOM2WEo599kLzcDEb92-zheXjX7z1klhEuM2WEkUIoOrYqx1jlUnIQHCwg48aUOEQMw2SiJHCSq4nLqcJ2MiHWcYRB0IPkrPtbB_-xgNjoeREtlG0c8IuoscQ8Rxgz1KKnf9CZX4SqTbemsOBCKtlS5x1lg48xgNN1KOYmrDRGel2obgvV34W27GXHLosSVv-Deji4_nWcdI5ZbHzYOBjDlAqet3rW6UVs4HOjm_CuRU5zrl-fhpqO2EjeDJW-p18js41p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811656898</pqid></control><display><type>article</type><title>Mapping ignorance: 300 years of collecting flowering plants in Africa</title><source>Jstor Complete Legacy</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Stropp, Juliana ; Ladle, Richard J. ; M. Malhado, Ana C. ; Hortal, Joaquín ; Gaffuri, Julien ; H. Temperley, William ; Olav Skøien, Jon ; Mayaux, Philippe</creator><creatorcontrib>Stropp, Juliana ; Ladle, Richard J. ; M. Malhado, Ana C. ; Hortal, Joaquín ; Gaffuri, Julien ; H. Temperley, William ; Olav Skøien, Jon ; Mayaux, Philippe</creatorcontrib><description>Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. This study aims to answer three questions: (1) How reliable are species-occurrence data for flowering plants in Africa? (2) Where and when did botanical sampling occur in the past 300 years? (3) How complete are plant inventories for Africa? Location: Africa. Methods: By filtering a publicly available dataset containing 3.5 million records of flowering plants, we obtained 934,676 herbarium specimens with complete information regarding species name, date and location of collection. Based on these specimens, we estimated inventory completeness for sampling units (SUs) of 25 km × 25 km. We then tested whether the spatial distribution of well-sampled SUs was correlated with temporal parameters of botanical sampling. Finally, we determined whether inventory completeness in individual countries was related to old or recently collected specimens. Results: Thirty-one per cent of SUs contained at least one specimen, whereas only 2.4% of SUs contained a sufficient number of specimens to reliably estimate inventory completeness. We found that the location of poorly sampled areas remained almost unchanged for half a century. Moreover, there was pronounced temporal bias towards old specimens in South Africa, the country that holds half of the available data for the continent. There, high inventory completeness stems from specimens collected several decades ago. Main conclusions: Despite the increasing availability of species occurrence data for Africa, broad-scale biogeographical research is still compromised by the uncertain quality and spatial and temporal biases of such data. To avoid erroneous inferences, the quality and biases in species-occurrence data should be critically evaluated and quantified prior to use. To this end, we propose a quantification method based on inventory completeness using easily accessible species-occurrence data.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.12468</identifier><identifier>CODEN: GEBIFS</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Africa ; data quality ; flowering plants ; GBIF ; inventory completeness ; spatial and temporal biases ; species-occurrence data</subject><ispartof>Global ecology and biogeography, 2016-09, Vol.25 (9), p.1085-1096</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons Ltd.</rights><rights>2016 The Authors. Global Ecology and Biogeography published by John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4258-9a6a86693bc971197885e65ece0afb32f02a412d98e5279df7391cdd2cf501e63</citedby><cites>FETCH-LOGICAL-c4258-9a6a86693bc971197885e65ece0afb32f02a412d98e5279df7391cdd2cf501e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44133657$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44133657$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57995,58228</link.rule.ids></links><search><creatorcontrib>Stropp, Juliana</creatorcontrib><creatorcontrib>Ladle, Richard J.</creatorcontrib><creatorcontrib>M. Malhado, Ana C.</creatorcontrib><creatorcontrib>Hortal, Joaquín</creatorcontrib><creatorcontrib>Gaffuri, Julien</creatorcontrib><creatorcontrib>H. Temperley, William</creatorcontrib><creatorcontrib>Olav Skøien, Jon</creatorcontrib><creatorcontrib>Mayaux, Philippe</creatorcontrib><title>Mapping ignorance: 300 years of collecting flowering plants in Africa</title><title>Global ecology and biogeography</title><addtitle>Global Ecol. Biogeogr</addtitle><description>Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. This study aims to answer three questions: (1) How reliable are species-occurrence data for flowering plants in Africa? (2) Where and when did botanical sampling occur in the past 300 years? (3) How complete are plant inventories for Africa? Location: Africa. Methods: By filtering a publicly available dataset containing 3.5 million records of flowering plants, we obtained 934,676 herbarium specimens with complete information regarding species name, date and location of collection. Based on these specimens, we estimated inventory completeness for sampling units (SUs) of 25 km × 25 km. We then tested whether the spatial distribution of well-sampled SUs was correlated with temporal parameters of botanical sampling. Finally, we determined whether inventory completeness in individual countries was related to old or recently collected specimens. Results: Thirty-one per cent of SUs contained at least one specimen, whereas only 2.4% of SUs contained a sufficient number of specimens to reliably estimate inventory completeness. We found that the location of poorly sampled areas remained almost unchanged for half a century. Moreover, there was pronounced temporal bias towards old specimens in South Africa, the country that holds half of the available data for the continent. There, high inventory completeness stems from specimens collected several decades ago. Main conclusions: Despite the increasing availability of species occurrence data for Africa, broad-scale biogeographical research is still compromised by the uncertain quality and spatial and temporal biases of such data. To avoid erroneous inferences, the quality and biases in species-occurrence data should be critically evaluated and quantified prior to use. To this end, we propose a quantification method based on inventory completeness using easily accessible species-occurrence data.</description><subject>Africa</subject><subject>data quality</subject><subject>flowering plants</subject><subject>GBIF</subject><subject>inventory completeness</subject><subject>spatial and temporal biases</subject><subject>species-occurrence data</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtLw0AUhYMo-Fz4A4SAG11E550Zd7XUKr42Fd0N0-mdkppm4kxK7b83NdqF4N3cC-c7l8NJkmOMLnA7l1MYX2DChNxK9jATIpOEyu3NTd52k_0YZwghzrjYSwaPpq6LapoW08oHU1m4SilC6QpMiKl3qfVlCbZZI670Swjrqy5N1cS0qNKeC4U1h8mOM2WEo599kLzcDEb92-zheXjX7z1klhEuM2WEkUIoOrYqx1jlUnIQHCwg48aUOEQMw2SiJHCSq4nLqcJ2MiHWcYRB0IPkrPtbB_-xgNjoeREtlG0c8IuoscQ8Rxgz1KKnf9CZX4SqTbemsOBCKtlS5x1lg48xgNN1KOYmrDRGel2obgvV34W27GXHLosSVv-Deji4_nWcdI5ZbHzYOBjDlAqet3rW6UVs4HOjm_CuRU5zrl-fhpqO2EjeDJW-p18js41p</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Stropp, Juliana</creator><creator>Ladle, Richard J.</creator><creator>M. Malhado, Ana C.</creator><creator>Hortal, Joaquín</creator><creator>Gaffuri, Julien</creator><creator>H. Temperley, William</creator><creator>Olav Skøien, Jon</creator><creator>Mayaux, Philippe</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>201609</creationdate><title>Mapping ignorance: 300 years of collecting flowering plants in Africa</title><author>Stropp, Juliana ; Ladle, Richard J. ; M. Malhado, Ana C. ; Hortal, Joaquín ; Gaffuri, Julien ; H. Temperley, William ; Olav Skøien, Jon ; Mayaux, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4258-9a6a86693bc971197885e65ece0afb32f02a412d98e5279df7391cdd2cf501e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Africa</topic><topic>data quality</topic><topic>flowering plants</topic><topic>GBIF</topic><topic>inventory completeness</topic><topic>spatial and temporal biases</topic><topic>species-occurrence data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stropp, Juliana</creatorcontrib><creatorcontrib>Ladle, Richard J.</creatorcontrib><creatorcontrib>M. Malhado, Ana C.</creatorcontrib><creatorcontrib>Hortal, Joaquín</creatorcontrib><creatorcontrib>Gaffuri, Julien</creatorcontrib><creatorcontrib>H. Temperley, William</creatorcontrib><creatorcontrib>Olav Skøien, Jon</creatorcontrib><creatorcontrib>Mayaux, Philippe</creatorcontrib><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stropp, Juliana</au><au>Ladle, Richard J.</au><au>M. Malhado, Ana C.</au><au>Hortal, Joaquín</au><au>Gaffuri, Julien</au><au>H. Temperley, William</au><au>Olav Skøien, Jon</au><au>Mayaux, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping ignorance: 300 years of collecting flowering plants in Africa</atitle><jtitle>Global ecology and biogeography</jtitle><addtitle>Global Ecol. Biogeogr</addtitle><date>2016-09</date><risdate>2016</risdate><volume>25</volume><issue>9</issue><spage>1085</spage><epage>1096</epage><pages>1085-1096</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><coden>GEBIFS</coden><abstract>Aim: Spatial and temporal biases in species-occurrence data can compromise broad-scale biogeographical research and conservation planning. Although spatial biases have been frequently scrutinized, temporal biases and the overall quality of species-occurrence data have received far less attention. This study aims to answer three questions: (1) How reliable are species-occurrence data for flowering plants in Africa? (2) Where and when did botanical sampling occur in the past 300 years? (3) How complete are plant inventories for Africa? Location: Africa. Methods: By filtering a publicly available dataset containing 3.5 million records of flowering plants, we obtained 934,676 herbarium specimens with complete information regarding species name, date and location of collection. Based on these specimens, we estimated inventory completeness for sampling units (SUs) of 25 km × 25 km. We then tested whether the spatial distribution of well-sampled SUs was correlated with temporal parameters of botanical sampling. Finally, we determined whether inventory completeness in individual countries was related to old or recently collected specimens. Results: Thirty-one per cent of SUs contained at least one specimen, whereas only 2.4% of SUs contained a sufficient number of specimens to reliably estimate inventory completeness. We found that the location of poorly sampled areas remained almost unchanged for half a century. Moreover, there was pronounced temporal bias towards old specimens in South Africa, the country that holds half of the available data for the continent. There, high inventory completeness stems from specimens collected several decades ago. Main conclusions: Despite the increasing availability of species occurrence data for Africa, broad-scale biogeographical research is still compromised by the uncertain quality and spatial and temporal biases of such data. To avoid erroneous inferences, the quality and biases in species-occurrence data should be critically evaluated and quantified prior to use. To this end, we propose a quantification method based on inventory completeness using easily accessible species-occurrence data.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/geb.12468</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2016-09, Vol.25 (9), p.1085-1096
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_miscellaneous_1815701140
source Jstor Complete Legacy; Wiley Online Library Journals Frontfile Complete
subjects Africa
data quality
flowering plants
GBIF
inventory completeness
spatial and temporal biases
species-occurrence data
title Mapping ignorance: 300 years of collecting flowering plants in Africa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20ignorance:%20300%20years%20of%20collecting%20flowering%20plants%20in%20Africa&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Stropp,%20Juliana&rft.date=2016-09&rft.volume=25&rft.issue=9&rft.spage=1085&rft.epage=1096&rft.pages=1085-1096&rft.issn=1466-822X&rft.eissn=1466-8238&rft.coden=GEBIFS&rft_id=info:doi/10.1111/geb.12468&rft_dat=%3Cjstor_proqu%3E44133657%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811656898&rft_id=info:pmid/&rft_jstor_id=44133657&rfr_iscdi=true