Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring
Aim: Spatial analysis of the distribution and density of species is of continuing interest within theoretical and applied ecology. Species distribution models (SDMs) are being increasingly used to analyse count, presence-absence and presence-only data sets. There is a growing literature on dynamic S...
Gespeichert in:
Veröffentlicht in: | Global ecology and biogeography 2016-09, Vol.25 (9), p.1144-1158 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1158 |
---|---|
container_issue | 9 |
container_start_page | 1144 |
container_title | Global ecology and biogeography |
container_volume | 25 |
creator | Thorson, James T. Ianelli, James N. Larsen, Elise A. Ries, Leslie Scheuerell, Mark D. Szuwalski, Cody Zipkin, Elise F. |
description | Aim: Spatial analysis of the distribution and density of species is of continuing interest within theoretical and applied ecology. Species distribution models (SDMs) are being increasingly used to analyse count, presence-absence and presence-only data sets. There is a growing literature on dynamic SDMs (which incorporate temporal variation in species distribution), joint SDMs (which simultaneously analyse the correlated distribution of multiple species) and geostatistical models (which account for similarity between nearby sites caused by unobserved covariates). However, no previous study has combined all three attributes within a single framework. Innovation: We develop spatial dynamic factor analysis for use as a 'joint, dynamic SDM' (JDSDM), which uses geostatistical methods to account for spatial similarity when estimating one or more 'factors'. Each factor evolves over time following a density-dependent (Gompertz) process, and the logdensity of each species is approximated as a linear combination of different factors. We demonstrate a JDSDM using two multispecies case studies (an annual survey of bottom-associated species in the Bering Sea and a seasonal survey of butterfly density in the continental USA), and also provide our code publicly as an R package. Main conclusions: Case study applications show that that JDSDMs can be used for species ordination, i.e. showing that dynamics for butterfly species within the same genus are significantly more correlated than for species from different genera. We also demonstrate how JDSDMs can rapidly identify dominant patterns in community dynamics, including the decline and recovery of several Bering Sea fishes since 2008, and the 'flight curves' typical of early or late-emerging butterflies. We conclude by suggesting future research that could incorporate phylogenetic relatedness or functional similarity, and propose that our approach could be used to monitor community dynamics at large spatial and temporal scales. |
doi_str_mv | 10.1111/geb.12464 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815700002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44133662</jstor_id><sourcerecordid>44133662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4914-ba7a53308cdc4a4a6edbf63acb7606508c9c92bb941f7e9cc2e4109864fd3e1b3</originalsourceid><addsrcrecordid>eNp1kT1PwzAQhiMEEqUw8AOQLLHAkNaOHSdhg6oUqgoYysdmOY5TuSR2sRNB_z1uAx2Q8HKnu-c93b0OglMEB8i_4ULmAxQRSvaCHiKUhmmE0_1dHr0dBkfOLSGEMYlpL1BTo3QDirXmtRLAraRQ0oFCucaqvG2U0aA2hazcFeCgMaYCpbFAmLputWrWwNhCab7luC78gE0eNrJeGcsrr_WUsUovjoODkldOnvzEfvB8O56P7sLZ4-R-dD0LBckQCXOe8BhjmIpCEE44lUVeUsxFnlBIY1_PRBbleUZQmchMiEgSBLOUkrLAEuW4H1x0c1fWfLTSNaxWTsiq4lqa1jGUojjx98PIo-d_0KVprfbbbShEY5omsacuO0pY45yVJVtZVXO7ZgiyjenMm862pnt22LGfqpLr_0E2Gd_8Ks46xdJ5n3YKQhDGlG52DLu-_xH5tetz-85ogpOYvT5M2JzQLHqJpuwJfwMkrZ18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811656875</pqid></control><display><type>article</type><title>Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>Thorson, James T. ; Ianelli, James N. ; Larsen, Elise A. ; Ries, Leslie ; Scheuerell, Mark D. ; Szuwalski, Cody ; Zipkin, Elise F.</creator><creatorcontrib>Thorson, James T. ; Ianelli, James N. ; Larsen, Elise A. ; Ries, Leslie ; Scheuerell, Mark D. ; Szuwalski, Cody ; Zipkin, Elise F.</creatorcontrib><description>Aim: Spatial analysis of the distribution and density of species is of continuing interest within theoretical and applied ecology. Species distribution models (SDMs) are being increasingly used to analyse count, presence-absence and presence-only data sets. There is a growing literature on dynamic SDMs (which incorporate temporal variation in species distribution), joint SDMs (which simultaneously analyse the correlated distribution of multiple species) and geostatistical models (which account for similarity between nearby sites caused by unobserved covariates). However, no previous study has combined all three attributes within a single framework. Innovation: We develop spatial dynamic factor analysis for use as a 'joint, dynamic SDM' (JDSDM), which uses geostatistical methods to account for spatial similarity when estimating one or more 'factors'. Each factor evolves over time following a density-dependent (Gompertz) process, and the logdensity of each species is approximated as a linear combination of different factors. We demonstrate a JDSDM using two multispecies case studies (an annual survey of bottom-associated species in the Bering Sea and a seasonal survey of butterfly density in the continental USA), and also provide our code publicly as an R package. Main conclusions: Case study applications show that that JDSDMs can be used for species ordination, i.e. showing that dynamics for butterfly species within the same genus are significantly more correlated than for species from different genera. We also demonstrate how JDSDMs can rapidly identify dominant patterns in community dynamics, including the decline and recovery of several Bering Sea fishes since 2008, and the 'flight curves' typical of early or late-emerging butterflies. We conclude by suggesting future research that could incorporate phylogenetic relatedness or functional similarity, and propose that our approach could be used to monitor community dynamics at large spatial and temporal scales.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.12464</identifier><identifier>CODEN: GEBIFS</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Bering Sea ; dynamic factor analysis ; flight curve ; geostatistics ; MACROECOLOGICAL METHODS ; spatio-temporal model ; species co-occurrence ; species distribution model ; species ordination ; Studies</subject><ispartof>Global ecology and biogeography, 2016-09, Vol.25 (9), p.1144-1158</ispartof><rights>Copyright © 2016 John Wiley & Sons Ltd.</rights><rights>2016 John Wiley & Sons Ltd</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4914-ba7a53308cdc4a4a6edbf63acb7606508c9c92bb941f7e9cc2e4109864fd3e1b3</citedby><cites>FETCH-LOGICAL-c4914-ba7a53308cdc4a4a6edbf63acb7606508c9c92bb941f7e9cc2e4109864fd3e1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44133662$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44133662$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27903,27904,45553,45554,57996,58229</link.rule.ids></links><search><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Ianelli, James N.</creatorcontrib><creatorcontrib>Larsen, Elise A.</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><creatorcontrib>Scheuerell, Mark D.</creatorcontrib><creatorcontrib>Szuwalski, Cody</creatorcontrib><creatorcontrib>Zipkin, Elise F.</creatorcontrib><title>Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring</title><title>Global ecology and biogeography</title><addtitle>Global Ecol. Biogeogr</addtitle><description>Aim: Spatial analysis of the distribution and density of species is of continuing interest within theoretical and applied ecology. Species distribution models (SDMs) are being increasingly used to analyse count, presence-absence and presence-only data sets. There is a growing literature on dynamic SDMs (which incorporate temporal variation in species distribution), joint SDMs (which simultaneously analyse the correlated distribution of multiple species) and geostatistical models (which account for similarity between nearby sites caused by unobserved covariates). However, no previous study has combined all three attributes within a single framework. Innovation: We develop spatial dynamic factor analysis for use as a 'joint, dynamic SDM' (JDSDM), which uses geostatistical methods to account for spatial similarity when estimating one or more 'factors'. Each factor evolves over time following a density-dependent (Gompertz) process, and the logdensity of each species is approximated as a linear combination of different factors. We demonstrate a JDSDM using two multispecies case studies (an annual survey of bottom-associated species in the Bering Sea and a seasonal survey of butterfly density in the continental USA), and also provide our code publicly as an R package. Main conclusions: Case study applications show that that JDSDMs can be used for species ordination, i.e. showing that dynamics for butterfly species within the same genus are significantly more correlated than for species from different genera. We also demonstrate how JDSDMs can rapidly identify dominant patterns in community dynamics, including the decline and recovery of several Bering Sea fishes since 2008, and the 'flight curves' typical of early or late-emerging butterflies. We conclude by suggesting future research that could incorporate phylogenetic relatedness or functional similarity, and propose that our approach could be used to monitor community dynamics at large spatial and temporal scales.</description><subject>Bering Sea</subject><subject>dynamic factor analysis</subject><subject>flight curve</subject><subject>geostatistics</subject><subject>MACROECOLOGICAL METHODS</subject><subject>spatio-temporal model</subject><subject>species co-occurrence</subject><subject>species distribution model</subject><subject>species ordination</subject><subject>Studies</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kT1PwzAQhiMEEqUw8AOQLLHAkNaOHSdhg6oUqgoYysdmOY5TuSR2sRNB_z1uAx2Q8HKnu-c93b0OglMEB8i_4ULmAxQRSvaCHiKUhmmE0_1dHr0dBkfOLSGEMYlpL1BTo3QDirXmtRLAraRQ0oFCucaqvG2U0aA2hazcFeCgMaYCpbFAmLputWrWwNhCab7luC78gE0eNrJeGcsrr_WUsUovjoODkldOnvzEfvB8O56P7sLZ4-R-dD0LBckQCXOe8BhjmIpCEE44lUVeUsxFnlBIY1_PRBbleUZQmchMiEgSBLOUkrLAEuW4H1x0c1fWfLTSNaxWTsiq4lqa1jGUojjx98PIo-d_0KVprfbbbShEY5omsacuO0pY45yVJVtZVXO7ZgiyjenMm862pnt22LGfqpLr_0E2Gd_8Ks46xdJ5n3YKQhDGlG52DLu-_xH5tetz-85ogpOYvT5M2JzQLHqJpuwJfwMkrZ18</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Thorson, James T.</creator><creator>Ianelli, James N.</creator><creator>Larsen, Elise A.</creator><creator>Ries, Leslie</creator><creator>Scheuerell, Mark D.</creator><creator>Szuwalski, Cody</creator><creator>Zipkin, Elise F.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>201609</creationdate><title>Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring</title><author>Thorson, James T. ; Ianelli, James N. ; Larsen, Elise A. ; Ries, Leslie ; Scheuerell, Mark D. ; Szuwalski, Cody ; Zipkin, Elise F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4914-ba7a53308cdc4a4a6edbf63acb7606508c9c92bb941f7e9cc2e4109864fd3e1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bering Sea</topic><topic>dynamic factor analysis</topic><topic>flight curve</topic><topic>geostatistics</topic><topic>MACROECOLOGICAL METHODS</topic><topic>spatio-temporal model</topic><topic>species co-occurrence</topic><topic>species distribution model</topic><topic>species ordination</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Ianelli, James N.</creatorcontrib><creatorcontrib>Larsen, Elise A.</creatorcontrib><creatorcontrib>Ries, Leslie</creatorcontrib><creatorcontrib>Scheuerell, Mark D.</creatorcontrib><creatorcontrib>Szuwalski, Cody</creatorcontrib><creatorcontrib>Zipkin, Elise F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thorson, James T.</au><au>Ianelli, James N.</au><au>Larsen, Elise A.</au><au>Ries, Leslie</au><au>Scheuerell, Mark D.</au><au>Szuwalski, Cody</au><au>Zipkin, Elise F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring</atitle><jtitle>Global ecology and biogeography</jtitle><addtitle>Global Ecol. Biogeogr</addtitle><date>2016-09</date><risdate>2016</risdate><volume>25</volume><issue>9</issue><spage>1144</spage><epage>1158</epage><pages>1144-1158</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><coden>GEBIFS</coden><abstract>Aim: Spatial analysis of the distribution and density of species is of continuing interest within theoretical and applied ecology. Species distribution models (SDMs) are being increasingly used to analyse count, presence-absence and presence-only data sets. There is a growing literature on dynamic SDMs (which incorporate temporal variation in species distribution), joint SDMs (which simultaneously analyse the correlated distribution of multiple species) and geostatistical models (which account for similarity between nearby sites caused by unobserved covariates). However, no previous study has combined all three attributes within a single framework. Innovation: We develop spatial dynamic factor analysis for use as a 'joint, dynamic SDM' (JDSDM), which uses geostatistical methods to account for spatial similarity when estimating one or more 'factors'. Each factor evolves over time following a density-dependent (Gompertz) process, and the logdensity of each species is approximated as a linear combination of different factors. We demonstrate a JDSDM using two multispecies case studies (an annual survey of bottom-associated species in the Bering Sea and a seasonal survey of butterfly density in the continental USA), and also provide our code publicly as an R package. Main conclusions: Case study applications show that that JDSDMs can be used for species ordination, i.e. showing that dynamics for butterfly species within the same genus are significantly more correlated than for species from different genera. We also demonstrate how JDSDMs can rapidly identify dominant patterns in community dynamics, including the decline and recovery of several Bering Sea fishes since 2008, and the 'flight curves' typical of early or late-emerging butterflies. We conclude by suggesting future research that could incorporate phylogenetic relatedness or functional similarity, and propose that our approach could be used to monitor community dynamics at large spatial and temporal scales.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/geb.12464</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1466-822X |
ispartof | Global ecology and biogeography, 2016-09, Vol.25 (9), p.1144-1158 |
issn | 1466-822X 1466-8238 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815700002 |
source | Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy |
subjects | Bering Sea dynamic factor analysis flight curve geostatistics MACROECOLOGICAL METHODS spatio-temporal model species co-occurrence species distribution model species ordination Studies |
title | Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20dynamic%20species%20distribution%20models:%20a%20tool%20for%20community%20ordination%20and%20spatio-temporal%20monitoring&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Thorson,%20James%20T.&rft.date=2016-09&rft.volume=25&rft.issue=9&rft.spage=1144&rft.epage=1158&rft.pages=1144-1158&rft.issn=1466-822X&rft.eissn=1466-8238&rft.coden=GEBIFS&rft_id=info:doi/10.1111/geb.12464&rft_dat=%3Cjstor_proqu%3E44133662%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811656875&rft_id=info:pmid/&rft_jstor_id=44133662&rfr_iscdi=true |