Adaptive cluster sampling with clusters selected without replacement and stopping rule

Adaptive cluster sampling (ACS) has received much attention in recent years since it yields more precise estimates than conventional sampling designs when applied to rare and clustered populations. These results, however, are impacted by the availability of some prior knowledge about the spatial dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and ecological statistics 2016-09, Vol.23 (3), p.453-468
Hauptverfasser: Gattone, Stefano Antonio, Mohamed, Esha, Di Battista, Tonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adaptive cluster sampling (ACS) has received much attention in recent years since it yields more precise estimates than conventional sampling designs when applied to rare and clustered populations. These results, however, are impacted by the availability of some prior knowledge about the spatial distribution and the absolute abundance of the population under study. This prior information helps the researcher to select a suitable critical value that triggers the adaptive search, the neighborhood definition and the initial sample size. A bad setting of the ACS design would worsen the performance of the adaptive estimators. In particular, one of the greatest weaknesses in ACS is the inability to control the final sampling effort if, for example, the critical value is set too low. To overcome this drawback one can introduce ACS with clusters selected without replacement where one can fix in advance the number of distinct clusters to be selected or ACS with a stopping rule which stops the adaptive sampling when a predetermined sample size limit is reached or when a given stopping rule is verified. However, the stopping rule breaks down the theoretical basis for the unbiasedness of the ACS estimators introducing an unknown amount of bias in the estimates. The current study improves the performance of ACS when applied to patchy and clustered but not rare populations and/or less clustered populations. This is done by combining the stopping rule with ACS without replacement of clusters so as to further limit the sampling effort in form of traveling expenses by avoiding repeat observations and by reducing the final sample size. The performance of the proposed design is investigated using simulated and real data.
ISSN:1352-8505
1573-3009
DOI:10.1007/s10651-016-0348-9