Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice

Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg²⁺) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant molecular biology reporter 2015-12, Vol.33 (6), p.1975-1987
Hauptverfasser: Zhang, Huan, Liu, Linglong, Cai, Maohong, Zhu, Susong, Zhao, Jieyu, Zheng, Tianhui, Xu, Xinyang, Zeng, Zhaoqiong, Niu, Jing, Jiang, Ling, Chen, Saihua, Wan, Jianmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1987
container_issue 6
container_start_page 1975
container_title Plant molecular biology reporter
container_volume 33
creator Zhang, Huan
Liu, Linglong
Cai, Maohong
Zhu, Susong
Zhao, Jieyu
Zheng, Tianhui
Xu, Xinyang
Zeng, Zhaoqiong
Niu, Jing
Jiang, Ling
Chen, Saihua
Wan, Jianmin
description Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg²⁺) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a proposed model revealed that Mg-chelatase I subunit (CHLI) and Mg-chelatase D subunit (CHLD) can interact directly; however, their relation remains elusive in rice, a monocot model plant. In this study, we characterized a chlorophyll-deficiency mutant, etiolated leaf and lethal (ell), which displayed a yellow leaf in young seedlings and became lethal after three-leaf stage. Chlorophyll content in homozygous ell mutant was approximately 1 % of that in the wild type. Besides, chloroplast development in the mutant was entirely arrested and no thylakoid structure was observed. By map-based cloning, the ell locus was delimited to a 3.9-Mb interval in chromosome 3. A single-base mutation (G529C) in OsCHLI was identified, leading to an amino acid substitution (G177R) in a highly conserved region. Compared with the wild type, more Proto but less magnesium protoporphyrin IX (Mg-Proto) was measured in the ell mutant. Using protoplast transfection and callus transformation, we found that exogenous OsCHLI could consistently recover the lesion of chloroplast in the ell mutant. By subcellar localization analysis, OsCHLI was detected in the chloroplast. Despite the secondary structure of OsCHLI that was predicted to be altered in the mutant, the point mutation did not affect subcellular localization. Real-time PCR demonstrated that the ell mutation induced significantly transcriptional downregulation of the photosynthesis-associated nuclear and plastid genes. Additionally, yeast-two-hybrid experiments indicated that the single amino acid substitution blocked the intrinsic interaction between OsCHLI and OsCHLD. Moreover, OsCHLI showed physical interactions with some thioredoxins (TRXs), suggesting a similar regulatory mechanism of Mg-chelatase activity in both monocot and dicot plants.
doi_str_mv 10.1007/s11105-015-0889-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815690474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815690474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-fbc75834f7a5f0183a9c4a1959cf343536eabbb24a96fde73e799fa6ef79df083</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1EJZaWB-CEJS5cUjxxHNtH2EK70latWnq2Jtnx1tWus9iOEG9PtuFQceAwmjl836-RfsbegzgHIfTnDABCVQKmMcZW8hVbgNJ1ZQ2Y12whtFSVbRvxhr3N-UlMzsQt2OF2CLHw67FgCUPkg-fXuI2Uw7jny0faYcFM_CYvr9YrfkmR-AXuDxQzL4_EV7FQwv5Z_UrlF1HkzyTGzfG44PdjN8ZQMg-R34WeztiJx12md3_3KXv4_u3H8qpa31yull_WVd-ItlS-67UysvEalRdgJNq-QbDK9l42UsmWsOu6ukHb-g1pSdpajy15bTdeGHnKPs25hzT8HCkXtw-5p90OIw1jdmBAtVY0upnQj_-gT8OY4vSdA61qCba2Rwpmqk9Dzom8O6Swx_TbgXDHDtzcgZs6cMcOnJycenbyxMYtpRfJ_5E-zJLHweE2hewe7msBrRBQG7BG_gEUcpE5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752319294</pqid></control><display><type>article</type><title>Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhang, Huan ; Liu, Linglong ; Cai, Maohong ; Zhu, Susong ; Zhao, Jieyu ; Zheng, Tianhui ; Xu, Xinyang ; Zeng, Zhaoqiong ; Niu, Jing ; Jiang, Ling ; Chen, Saihua ; Wan, Jianmin</creator><creatorcontrib>Zhang, Huan ; Liu, Linglong ; Cai, Maohong ; Zhu, Susong ; Zhao, Jieyu ; Zheng, Tianhui ; Xu, Xinyang ; Zeng, Zhaoqiong ; Niu, Jing ; Jiang, Ling ; Chen, Saihua ; Wan, Jianmin</creatorcontrib><description>Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg²⁺) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a proposed model revealed that Mg-chelatase I subunit (CHLI) and Mg-chelatase D subunit (CHLD) can interact directly; however, their relation remains elusive in rice, a monocot model plant. In this study, we characterized a chlorophyll-deficiency mutant, etiolated leaf and lethal (ell), which displayed a yellow leaf in young seedlings and became lethal after three-leaf stage. Chlorophyll content in homozygous ell mutant was approximately 1 % of that in the wild type. Besides, chloroplast development in the mutant was entirely arrested and no thylakoid structure was observed. By map-based cloning, the ell locus was delimited to a 3.9-Mb interval in chromosome 3. A single-base mutation (G529C) in OsCHLI was identified, leading to an amino acid substitution (G177R) in a highly conserved region. Compared with the wild type, more Proto but less magnesium protoporphyrin IX (Mg-Proto) was measured in the ell mutant. Using protoplast transfection and callus transformation, we found that exogenous OsCHLI could consistently recover the lesion of chloroplast in the ell mutant. By subcellar localization analysis, OsCHLI was detected in the chloroplast. Despite the secondary structure of OsCHLI that was predicted to be altered in the mutant, the point mutation did not affect subcellular localization. Real-time PCR demonstrated that the ell mutation induced significantly transcriptional downregulation of the photosynthesis-associated nuclear and plastid genes. Additionally, yeast-two-hybrid experiments indicated that the single amino acid substitution blocked the intrinsic interaction between OsCHLI and OsCHLD. Moreover, OsCHLI showed physical interactions with some thioredoxins (TRXs), suggesting a similar regulatory mechanism of Mg-chelatase activity in both monocot and dicot plants.</description><identifier>ISSN: 0735-9640</identifier><identifier>EISSN: 1572-9818</identifier><identifier>DOI: 10.1007/s11105-015-0889-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>amino acid substitution ; Amino acids ; Bioinformatics ; Biomedical and Life Sciences ; Biosynthesis ; callus ; Chlorophyll ; Cloning ; etiolation ; gene expression regulation ; genes ; homozygosity ; Leaves ; Life Sciences ; Liliopsida ; loci ; Magnesium ; magnesium chelatase ; Magnoliopsida ; Metabolomics ; molecular cloning ; mutagenesis ; Mutants ; Mutation ; Original Paper ; Photosynthesis ; Plant biology ; Plant Breeding/Biotechnology ; Plant Sciences ; point mutation ; Proteomics ; protoplasts ; protoporphyrin ; quantitative polymerase chain reaction ; rice ; Seedlings ; thylakoids ; transcription (genetics) ; transfection ; Yeasts</subject><ispartof>Plant molecular biology reporter, 2015-12, Vol.33 (6), p.1975-1987</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-fbc75834f7a5f0183a9c4a1959cf343536eabbb24a96fde73e799fa6ef79df083</citedby><cites>FETCH-LOGICAL-c406t-fbc75834f7a5f0183a9c4a1959cf343536eabbb24a96fde73e799fa6ef79df083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11105-015-0889-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11105-015-0889-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Huan</creatorcontrib><creatorcontrib>Liu, Linglong</creatorcontrib><creatorcontrib>Cai, Maohong</creatorcontrib><creatorcontrib>Zhu, Susong</creatorcontrib><creatorcontrib>Zhao, Jieyu</creatorcontrib><creatorcontrib>Zheng, Tianhui</creatorcontrib><creatorcontrib>Xu, Xinyang</creatorcontrib><creatorcontrib>Zeng, Zhaoqiong</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Chen, Saihua</creatorcontrib><creatorcontrib>Wan, Jianmin</creatorcontrib><title>Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice</title><title>Plant molecular biology reporter</title><addtitle>Plant Mol Biol Rep</addtitle><description>Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg²⁺) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a proposed model revealed that Mg-chelatase I subunit (CHLI) and Mg-chelatase D subunit (CHLD) can interact directly; however, their relation remains elusive in rice, a monocot model plant. In this study, we characterized a chlorophyll-deficiency mutant, etiolated leaf and lethal (ell), which displayed a yellow leaf in young seedlings and became lethal after three-leaf stage. Chlorophyll content in homozygous ell mutant was approximately 1 % of that in the wild type. Besides, chloroplast development in the mutant was entirely arrested and no thylakoid structure was observed. By map-based cloning, the ell locus was delimited to a 3.9-Mb interval in chromosome 3. A single-base mutation (G529C) in OsCHLI was identified, leading to an amino acid substitution (G177R) in a highly conserved region. Compared with the wild type, more Proto but less magnesium protoporphyrin IX (Mg-Proto) was measured in the ell mutant. Using protoplast transfection and callus transformation, we found that exogenous OsCHLI could consistently recover the lesion of chloroplast in the ell mutant. By subcellar localization analysis, OsCHLI was detected in the chloroplast. Despite the secondary structure of OsCHLI that was predicted to be altered in the mutant, the point mutation did not affect subcellular localization. Real-time PCR demonstrated that the ell mutation induced significantly transcriptional downregulation of the photosynthesis-associated nuclear and plastid genes. Additionally, yeast-two-hybrid experiments indicated that the single amino acid substitution blocked the intrinsic interaction between OsCHLI and OsCHLD. Moreover, OsCHLI showed physical interactions with some thioredoxins (TRXs), suggesting a similar regulatory mechanism of Mg-chelatase activity in both monocot and dicot plants.</description><subject>amino acid substitution</subject><subject>Amino acids</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>callus</subject><subject>Chlorophyll</subject><subject>Cloning</subject><subject>etiolation</subject><subject>gene expression regulation</subject><subject>genes</subject><subject>homozygosity</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Liliopsida</subject><subject>loci</subject><subject>Magnesium</subject><subject>magnesium chelatase</subject><subject>Magnoliopsida</subject><subject>Metabolomics</subject><subject>molecular cloning</subject><subject>mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Original Paper</subject><subject>Photosynthesis</subject><subject>Plant biology</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Sciences</subject><subject>point mutation</subject><subject>Proteomics</subject><subject>protoplasts</subject><subject>protoporphyrin</subject><subject>quantitative polymerase chain reaction</subject><subject>rice</subject><subject>Seedlings</subject><subject>thylakoids</subject><subject>transcription (genetics)</subject><subject>transfection</subject><subject>Yeasts</subject><issn>0735-9640</issn><issn>1572-9818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kcFu1DAQhi1EJZaWB-CEJS5cUjxxHNtH2EK70latWnq2Jtnx1tWus9iOEG9PtuFQceAwmjl836-RfsbegzgHIfTnDABCVQKmMcZW8hVbgNJ1ZQ2Y12whtFSVbRvxhr3N-UlMzsQt2OF2CLHw67FgCUPkg-fXuI2Uw7jny0faYcFM_CYvr9YrfkmR-AXuDxQzL4_EV7FQwv5Z_UrlF1HkzyTGzfG44PdjN8ZQMg-R34WeztiJx12md3_3KXv4_u3H8qpa31yull_WVd-ItlS-67UysvEalRdgJNq-QbDK9l42UsmWsOu6ukHb-g1pSdpajy15bTdeGHnKPs25hzT8HCkXtw-5p90OIw1jdmBAtVY0upnQj_-gT8OY4vSdA61qCba2Rwpmqk9Dzom8O6Swx_TbgXDHDtzcgZs6cMcOnJycenbyxMYtpRfJ_5E-zJLHweE2hewe7msBrRBQG7BG_gEUcpE5</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Zhang, Huan</creator><creator>Liu, Linglong</creator><creator>Cai, Maohong</creator><creator>Zhu, Susong</creator><creator>Zhao, Jieyu</creator><creator>Zheng, Tianhui</creator><creator>Xu, Xinyang</creator><creator>Zeng, Zhaoqiong</creator><creator>Niu, Jing</creator><creator>Jiang, Ling</creator><creator>Chen, Saihua</creator><creator>Wan, Jianmin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>20151201</creationdate><title>Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice</title><author>Zhang, Huan ; Liu, Linglong ; Cai, Maohong ; Zhu, Susong ; Zhao, Jieyu ; Zheng, Tianhui ; Xu, Xinyang ; Zeng, Zhaoqiong ; Niu, Jing ; Jiang, Ling ; Chen, Saihua ; Wan, Jianmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-fbc75834f7a5f0183a9c4a1959cf343536eabbb24a96fde73e799fa6ef79df083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>amino acid substitution</topic><topic>Amino acids</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>callus</topic><topic>Chlorophyll</topic><topic>Cloning</topic><topic>etiolation</topic><topic>gene expression regulation</topic><topic>genes</topic><topic>homozygosity</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Liliopsida</topic><topic>loci</topic><topic>Magnesium</topic><topic>magnesium chelatase</topic><topic>Magnoliopsida</topic><topic>Metabolomics</topic><topic>molecular cloning</topic><topic>mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Original Paper</topic><topic>Photosynthesis</topic><topic>Plant biology</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Sciences</topic><topic>point mutation</topic><topic>Proteomics</topic><topic>protoplasts</topic><topic>protoporphyrin</topic><topic>quantitative polymerase chain reaction</topic><topic>rice</topic><topic>Seedlings</topic><topic>thylakoids</topic><topic>transcription (genetics)</topic><topic>transfection</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Huan</creatorcontrib><creatorcontrib>Liu, Linglong</creatorcontrib><creatorcontrib>Cai, Maohong</creatorcontrib><creatorcontrib>Zhu, Susong</creatorcontrib><creatorcontrib>Zhao, Jieyu</creatorcontrib><creatorcontrib>Zheng, Tianhui</creatorcontrib><creatorcontrib>Xu, Xinyang</creatorcontrib><creatorcontrib>Zeng, Zhaoqiong</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><creatorcontrib>Jiang, Ling</creatorcontrib><creatorcontrib>Chen, Saihua</creatorcontrib><creatorcontrib>Wan, Jianmin</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Plant molecular biology reporter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Huan</au><au>Liu, Linglong</au><au>Cai, Maohong</au><au>Zhu, Susong</au><au>Zhao, Jieyu</au><au>Zheng, Tianhui</au><au>Xu, Xinyang</au><au>Zeng, Zhaoqiong</au><au>Niu, Jing</au><au>Jiang, Ling</au><au>Chen, Saihua</au><au>Wan, Jianmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice</atitle><jtitle>Plant molecular biology reporter</jtitle><stitle>Plant Mol Biol Rep</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>33</volume><issue>6</issue><spage>1975</spage><epage>1987</epage><pages>1975-1987</pages><issn>0735-9640</issn><eissn>1572-9818</eissn><abstract>Proper chloroplast development and chlorophyll biosynthesis are essential for the photoautotrophic plants. The insertion of magnesium (Mg²⁺) into protoporphyrin IX (Proto), catalyzed by magnesium chelatase (Mg-chelatase), is the first committed step of chlorophyll biosynthesis. In dicot plants, a proposed model revealed that Mg-chelatase I subunit (CHLI) and Mg-chelatase D subunit (CHLD) can interact directly; however, their relation remains elusive in rice, a monocot model plant. In this study, we characterized a chlorophyll-deficiency mutant, etiolated leaf and lethal (ell), which displayed a yellow leaf in young seedlings and became lethal after three-leaf stage. Chlorophyll content in homozygous ell mutant was approximately 1 % of that in the wild type. Besides, chloroplast development in the mutant was entirely arrested and no thylakoid structure was observed. By map-based cloning, the ell locus was delimited to a 3.9-Mb interval in chromosome 3. A single-base mutation (G529C) in OsCHLI was identified, leading to an amino acid substitution (G177R) in a highly conserved region. Compared with the wild type, more Proto but less magnesium protoporphyrin IX (Mg-Proto) was measured in the ell mutant. Using protoplast transfection and callus transformation, we found that exogenous OsCHLI could consistently recover the lesion of chloroplast in the ell mutant. By subcellar localization analysis, OsCHLI was detected in the chloroplast. Despite the secondary structure of OsCHLI that was predicted to be altered in the mutant, the point mutation did not affect subcellular localization. Real-time PCR demonstrated that the ell mutation induced significantly transcriptional downregulation of the photosynthesis-associated nuclear and plastid genes. Additionally, yeast-two-hybrid experiments indicated that the single amino acid substitution blocked the intrinsic interaction between OsCHLI and OsCHLD. Moreover, OsCHLI showed physical interactions with some thioredoxins (TRXs), suggesting a similar regulatory mechanism of Mg-chelatase activity in both monocot and dicot plants.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11105-015-0889-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-9640
ispartof Plant molecular biology reporter, 2015-12, Vol.33 (6), p.1975-1987
issn 0735-9640
1572-9818
language eng
recordid cdi_proquest_miscellaneous_1815690474
source Springer Nature - Complete Springer Journals
subjects amino acid substitution
Amino acids
Bioinformatics
Biomedical and Life Sciences
Biosynthesis
callus
Chlorophyll
Cloning
etiolation
gene expression regulation
genes
homozygosity
Leaves
Life Sciences
Liliopsida
loci
Magnesium
magnesium chelatase
Magnoliopsida
Metabolomics
molecular cloning
mutagenesis
Mutants
Mutation
Original Paper
Photosynthesis
Plant biology
Plant Breeding/Biotechnology
Plant Sciences
point mutation
Proteomics
protoplasts
protoporphyrin
quantitative polymerase chain reaction
rice
Seedlings
thylakoids
transcription (genetics)
transfection
Yeasts
title Point Mutation of Magnesium Chelatase OsCHLI Gene Dampens the Interaction Between CHLI and CHLD Subunits in Rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20Mutation%20of%20Magnesium%20Chelatase%20OsCHLI%20Gene%20Dampens%20the%20Interaction%20Between%20CHLI%20and%20CHLD%20Subunits%20in%20Rice&rft.jtitle=Plant%20molecular%20biology%20reporter&rft.au=Zhang,%20Huan&rft.date=2015-12-01&rft.volume=33&rft.issue=6&rft.spage=1975&rft.epage=1987&rft.pages=1975-1987&rft.issn=0735-9640&rft.eissn=1572-9818&rft_id=info:doi/10.1007/s11105-015-0889-3&rft_dat=%3Cproquest_cross%3E1815690474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752319294&rft_id=info:pmid/&rfr_iscdi=true