Tensor decomposition for multiple-tissue gene expression experiments
Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologicall...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2016-09, Vol.48 (9), p.1094-1100 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 9 |
container_start_page | 1094 |
container_title | Nature genetics |
container_volume | 48 |
creator | Hore, Victoria Viñuela, Ana Buil, Alfonso Knight, Julian McCarthy, Mark I Small, Kerrin Marchini, Jonathan |
description | Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis.
Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered
cis
–expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets. |
doi_str_mv | 10.1038/ng.3624 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815681693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461940436</galeid><sourcerecordid>A461940436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</originalsourceid><addsrcrecordid>eNqNkstq3TAQhkVoadK05A3KgS7SLHyqu-1lyK2BQKBJuxU69tgo2JKrkSF9-8okTXJCF2UWM4y--dFcCDlgdM2oqL76fi00lztkjympC1ay6k2OqWaFpELvkveId5QyKWn1juzyUpZ1Tas9cnoLHkNctdCEcQrokgt-1eXMOA_JTQMUySHOsOrBwwrupwiIC5NDiG4En_ADedvZAeHjo98nP87Pbk--FVfXF5cnx1dFoxhNBeeqKzmouhWsparUkjcbK1ourGxF2VnKqNpwWWuuKtpRXm543UpgVipBlRD75MuD7hTDrxkwmdFhA8NgPYQZDauY0hXT9YJ-foXehTn6_LtMydy-1voF1dsBjPNdSNE2i6g5lprVkkqhM7X-B5WthdE1wUPncn6r4GirIDMJ7lNvZ0RzefP9_9nrn9vs4QPbxIAYoTNT3oCNvw2jZrkD43uz3EEmPz22P29GaJ-4v4t_HiXmJ99DfDGfV1p_AG8qtbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847476663</pqid></control><display><type>article</type><title>Tensor decomposition for multiple-tissue gene expression experiments</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</creator><creatorcontrib>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</creatorcontrib><description>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis.
Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered
cis
–expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3624</identifier><identifier>PMID: 27479908</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/43 ; 45/91 ; 631/208/199 ; 631/208/200 ; 631/208/212/2019 ; Adipose Tissue - metabolism ; Agriculture ; Animal Genetics and Genomics ; Bayes Theorem ; Bayesian analysis ; Biology ; Biomedicine ; Cancer ; Cancer Research ; Cohort Studies ; Consortia ; Datasets ; Decomposition ; Experiments ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Function ; Gene mapping ; Gene Regulatory Networks ; Genetic diversity ; Genetic Markers - genetics ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Human Genetics ; Humans ; Identification and classification ; Lymphocytes - metabolism ; Methods ; Observations ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Quantitative Trait Loci ; Skin - metabolism ; Software ; Sparsity ; Studies ; technical-report ; United Kingdom</subject><ispartof>Nature genetics, 2016-09, Vol.48 (9), p.1094-1100</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</citedby><cites>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</cites><orcidid>0000-0003-0610-8322 ; 0000-0003-4566-0005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hore, Victoria</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><creatorcontrib>Buil, Alfonso</creatorcontrib><creatorcontrib>Knight, Julian</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>Small, Kerrin</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><title>Tensor decomposition for multiple-tissue gene expression experiments</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis.
Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered
cis
–expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</description><subject>45</subject><subject>45/43</subject><subject>45/91</subject><subject>631/208/199</subject><subject>631/208/200</subject><subject>631/208/212/2019</subject><subject>Adipose Tissue - metabolism</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cohort Studies</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Gene Regulatory Networks</subject><subject>Genetic diversity</subject><subject>Genetic Markers - genetics</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Lymphocytes - metabolism</subject><subject>Methods</subject><subject>Observations</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Quantitative Trait Loci</subject><subject>Skin - metabolism</subject><subject>Software</subject><subject>Sparsity</subject><subject>Studies</subject><subject>technical-report</subject><subject>United Kingdom</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkstq3TAQhkVoadK05A3KgS7SLHyqu-1lyK2BQKBJuxU69tgo2JKrkSF9-8okTXJCF2UWM4y--dFcCDlgdM2oqL76fi00lztkjympC1ay6k2OqWaFpELvkveId5QyKWn1juzyUpZ1Tas9cnoLHkNctdCEcQrokgt-1eXMOA_JTQMUySHOsOrBwwrupwiIC5NDiG4En_ADedvZAeHjo98nP87Pbk--FVfXF5cnx1dFoxhNBeeqKzmouhWsparUkjcbK1ourGxF2VnKqNpwWWuuKtpRXm543UpgVipBlRD75MuD7hTDrxkwmdFhA8NgPYQZDauY0hXT9YJ-foXehTn6_LtMydy-1voF1dsBjPNdSNE2i6g5lprVkkqhM7X-B5WthdE1wUPncn6r4GirIDMJ7lNvZ0RzefP9_9nrn9vs4QPbxIAYoTNT3oCNvw2jZrkD43uz3EEmPz22P29GaJ-4v4t_HiXmJ99DfDGfV1p_AG8qtbk</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hore, Victoria</creator><creator>Viñuela, Ana</creator><creator>Buil, Alfonso</creator><creator>Knight, Julian</creator><creator>McCarthy, Mark I</creator><creator>Small, Kerrin</creator><creator>Marchini, Jonathan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0610-8322</orcidid><orcidid>https://orcid.org/0000-0003-4566-0005</orcidid></search><sort><creationdate>20160901</creationdate><title>Tensor decomposition for multiple-tissue gene expression experiments</title><author>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45</topic><topic>45/43</topic><topic>45/91</topic><topic>631/208/199</topic><topic>631/208/200</topic><topic>631/208/212/2019</topic><topic>Adipose Tissue - metabolism</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cohort Studies</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Gene Regulatory Networks</topic><topic>Genetic diversity</topic><topic>Genetic Markers - genetics</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Lymphocytes - metabolism</topic><topic>Methods</topic><topic>Observations</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Quantitative Trait Loci</topic><topic>Skin - metabolism</topic><topic>Software</topic><topic>Sparsity</topic><topic>Studies</topic><topic>technical-report</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hore, Victoria</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><creatorcontrib>Buil, Alfonso</creatorcontrib><creatorcontrib>Knight, Julian</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>Small, Kerrin</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hore, Victoria</au><au>Viñuela, Ana</au><au>Buil, Alfonso</au><au>Knight, Julian</au><au>McCarthy, Mark I</au><au>Small, Kerrin</au><au>Marchini, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor decomposition for multiple-tissue gene expression experiments</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>48</volume><issue>9</issue><spage>1094</spage><epage>1100</epage><pages>1094-1100</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis.
Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered
cis
–expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27479908</pmid><doi>10.1038/ng.3624</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0610-8322</orcidid><orcidid>https://orcid.org/0000-0003-4566-0005</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2016-09, Vol.48 (9), p.1094-1100 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_1815681693 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 45 45/43 45/91 631/208/199 631/208/200 631/208/212/2019 Adipose Tissue - metabolism Agriculture Animal Genetics and Genomics Bayes Theorem Bayesian analysis Biology Biomedicine Cancer Cancer Research Cohort Studies Consortia Datasets Decomposition Experiments Gene expression Gene Expression Profiling Gene Expression Regulation Gene Function Gene mapping Gene Regulatory Networks Genetic diversity Genetic Markers - genetics Genetic variation Genome-wide association studies Genome-Wide Association Study Genomes Human Genetics Humans Identification and classification Lymphocytes - metabolism Methods Observations Phenotype Polymorphism, Single Nucleotide - genetics Quantitative Trait Loci Skin - metabolism Software Sparsity Studies technical-report United Kingdom |
title | Tensor decomposition for multiple-tissue gene expression experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20decomposition%20for%20multiple-tissue%20gene%20expression%20experiments&rft.jtitle=Nature%20genetics&rft.au=Hore,%20Victoria&rft.date=2016-09-01&rft.volume=48&rft.issue=9&rft.spage=1094&rft.epage=1100&rft.pages=1094-1100&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3624&rft_dat=%3Cgale_proqu%3EA461940436%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847476663&rft_id=info:pmid/27479908&rft_galeid=A461940436&rfr_iscdi=true |