Tensor decomposition for multiple-tissue gene expression experiments

Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologicall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2016-09, Vol.48 (9), p.1094-1100
Hauptverfasser: Hore, Victoria, Viñuela, Ana, Buil, Alfonso, Knight, Julian, McCarthy, Mark I, Small, Kerrin, Marchini, Jonathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 9
container_start_page 1094
container_title Nature genetics
container_volume 48
creator Hore, Victoria
Viñuela, Ana
Buil, Alfonso
Knight, Julian
McCarthy, Mark I
Small, Kerrin
Marchini, Jonathan
description Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis. Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered cis –expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.
doi_str_mv 10.1038/ng.3624
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1815681693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A461940436</galeid><sourcerecordid>A461940436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</originalsourceid><addsrcrecordid>eNqNkstq3TAQhkVoadK05A3KgS7SLHyqu-1lyK2BQKBJuxU69tgo2JKrkSF9-8okTXJCF2UWM4y--dFcCDlgdM2oqL76fi00lztkjympC1ay6k2OqWaFpELvkveId5QyKWn1juzyUpZ1Tas9cnoLHkNctdCEcQrokgt-1eXMOA_JTQMUySHOsOrBwwrupwiIC5NDiG4En_ADedvZAeHjo98nP87Pbk--FVfXF5cnx1dFoxhNBeeqKzmouhWsparUkjcbK1ourGxF2VnKqNpwWWuuKtpRXm543UpgVipBlRD75MuD7hTDrxkwmdFhA8NgPYQZDauY0hXT9YJ-foXehTn6_LtMydy-1voF1dsBjPNdSNE2i6g5lprVkkqhM7X-B5WthdE1wUPncn6r4GirIDMJ7lNvZ0RzefP9_9nrn9vs4QPbxIAYoTNT3oCNvw2jZrkD43uz3EEmPz22P29GaJ-4v4t_HiXmJ99DfDGfV1p_AG8qtbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1847476663</pqid></control><display><type>article</type><title>Tensor decomposition for multiple-tissue gene expression experiments</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</creator><creatorcontrib>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</creatorcontrib><description>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis. Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered cis –expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/ng.3624</identifier><identifier>PMID: 27479908</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>45 ; 45/43 ; 45/91 ; 631/208/199 ; 631/208/200 ; 631/208/212/2019 ; Adipose Tissue - metabolism ; Agriculture ; Animal Genetics and Genomics ; Bayes Theorem ; Bayesian analysis ; Biology ; Biomedicine ; Cancer ; Cancer Research ; Cohort Studies ; Consortia ; Datasets ; Decomposition ; Experiments ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Function ; Gene mapping ; Gene Regulatory Networks ; Genetic diversity ; Genetic Markers - genetics ; Genetic variation ; Genome-wide association studies ; Genome-Wide Association Study ; Genomes ; Human Genetics ; Humans ; Identification and classification ; Lymphocytes - metabolism ; Methods ; Observations ; Phenotype ; Polymorphism, Single Nucleotide - genetics ; Quantitative Trait Loci ; Skin - metabolism ; Software ; Sparsity ; Studies ; technical-report ; United Kingdom</subject><ispartof>Nature genetics, 2016-09, Vol.48 (9), p.1094-1100</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</citedby><cites>FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</cites><orcidid>0000-0003-0610-8322 ; 0000-0003-4566-0005</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27479908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hore, Victoria</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><creatorcontrib>Buil, Alfonso</creatorcontrib><creatorcontrib>Knight, Julian</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>Small, Kerrin</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><title>Tensor decomposition for multiple-tissue gene expression experiments</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis. Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered cis –expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</description><subject>45</subject><subject>45/43</subject><subject>45/91</subject><subject>631/208/199</subject><subject>631/208/200</subject><subject>631/208/212/2019</subject><subject>Adipose Tissue - metabolism</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology</subject><subject>Biomedicine</subject><subject>Cancer</subject><subject>Cancer Research</subject><subject>Cohort Studies</subject><subject>Consortia</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Function</subject><subject>Gene mapping</subject><subject>Gene Regulatory Networks</subject><subject>Genetic diversity</subject><subject>Genetic Markers - genetics</subject><subject>Genetic variation</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Lymphocytes - metabolism</subject><subject>Methods</subject><subject>Observations</subject><subject>Phenotype</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Quantitative Trait Loci</subject><subject>Skin - metabolism</subject><subject>Software</subject><subject>Sparsity</subject><subject>Studies</subject><subject>technical-report</subject><subject>United Kingdom</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkstq3TAQhkVoadK05A3KgS7SLHyqu-1lyK2BQKBJuxU69tgo2JKrkSF9-8okTXJCF2UWM4y--dFcCDlgdM2oqL76fi00lztkjympC1ay6k2OqWaFpELvkveId5QyKWn1juzyUpZ1Tas9cnoLHkNctdCEcQrokgt-1eXMOA_JTQMUySHOsOrBwwrupwiIC5NDiG4En_ADedvZAeHjo98nP87Pbk--FVfXF5cnx1dFoxhNBeeqKzmouhWsparUkjcbK1ourGxF2VnKqNpwWWuuKtpRXm543UpgVipBlRD75MuD7hTDrxkwmdFhA8NgPYQZDauY0hXT9YJ-foXehTn6_LtMydy-1voF1dsBjPNdSNE2i6g5lprVkkqhM7X-B5WthdE1wUPncn6r4GirIDMJ7lNvZ0RzefP9_9nrn9vs4QPbxIAYoTNT3oCNvw2jZrkD43uz3EEmPz22P29GaJ-4v4t_HiXmJ99DfDGfV1p_AG8qtbk</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Hore, Victoria</creator><creator>Viñuela, Ana</creator><creator>Buil, Alfonso</creator><creator>Knight, Julian</creator><creator>McCarthy, Mark I</creator><creator>Small, Kerrin</creator><creator>Marchini, Jonathan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0610-8322</orcidid><orcidid>https://orcid.org/0000-0003-4566-0005</orcidid></search><sort><creationdate>20160901</creationdate><title>Tensor decomposition for multiple-tissue gene expression experiments</title><author>Hore, Victoria ; Viñuela, Ana ; Buil, Alfonso ; Knight, Julian ; McCarthy, Mark I ; Small, Kerrin ; Marchini, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-225f72e59d31d057642cba3d23a4d37fa0105b24962580f027b29d4e1a4530533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>45</topic><topic>45/43</topic><topic>45/91</topic><topic>631/208/199</topic><topic>631/208/200</topic><topic>631/208/212/2019</topic><topic>Adipose Tissue - metabolism</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology</topic><topic>Biomedicine</topic><topic>Cancer</topic><topic>Cancer Research</topic><topic>Cohort Studies</topic><topic>Consortia</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Function</topic><topic>Gene mapping</topic><topic>Gene Regulatory Networks</topic><topic>Genetic diversity</topic><topic>Genetic Markers - genetics</topic><topic>Genetic variation</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Lymphocytes - metabolism</topic><topic>Methods</topic><topic>Observations</topic><topic>Phenotype</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Quantitative Trait Loci</topic><topic>Skin - metabolism</topic><topic>Software</topic><topic>Sparsity</topic><topic>Studies</topic><topic>technical-report</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hore, Victoria</creatorcontrib><creatorcontrib>Viñuela, Ana</creatorcontrib><creatorcontrib>Buil, Alfonso</creatorcontrib><creatorcontrib>Knight, Julian</creatorcontrib><creatorcontrib>McCarthy, Mark I</creatorcontrib><creatorcontrib>Small, Kerrin</creatorcontrib><creatorcontrib>Marchini, Jonathan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hore, Victoria</au><au>Viñuela, Ana</au><au>Buil, Alfonso</au><au>Knight, Julian</au><au>McCarthy, Mark I</au><au>Small, Kerrin</au><au>Marchini, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensor decomposition for multiple-tissue gene expression experiments</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>48</volume><issue>9</issue><spage>1094</spage><epage>1100</epage><pages>1094-1100</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Victoria Hore, Jonathan Marchini and colleagues present a method for multiple-tissue gene expression studies aimed at uncovering gene networks linked to genetic variation. They apply their method to RNA sequencing data from adipose, skin and lymphoblastoid cell lines and identify several biologically relevant gene networks with a genetic basis. Genome-wide association studies of gene expression traits and other cellular phenotypes have successfully identified links between genetic variation and biological processes. The majority of discoveries have uncovered cis –expression quantitative trait locus (eQTL) effects via mass univariate testing of SNPs against gene expression in single tissues. Here we present a Bayesian method for multiple-tissue experiments focusing on uncovering gene networks linked to genetic variation. Our method decomposes the 3D array (or tensor) of gene expression measurements into a set of latent components. We identify sparse gene networks that can then be tested for association against genetic variation across the genome. We apply our method to a data set of 845 individuals from the TwinsUK cohort with gene expression measured via RNA-seq analysis in adipose, lymphoblastoid cell lines (LCLs) and skin. We uncover several gene networks with a genetic basis and clear biological and statistical significance. Extensions of this approach will allow integration of different omics, environmental and phenotypic data sets.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27479908</pmid><doi>10.1038/ng.3624</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0610-8322</orcidid><orcidid>https://orcid.org/0000-0003-4566-0005</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2016-09, Vol.48 (9), p.1094-1100
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_1815681693
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 45
45/43
45/91
631/208/199
631/208/200
631/208/212/2019
Adipose Tissue - metabolism
Agriculture
Animal Genetics and Genomics
Bayes Theorem
Bayesian analysis
Biology
Biomedicine
Cancer
Cancer Research
Cohort Studies
Consortia
Datasets
Decomposition
Experiments
Gene expression
Gene Expression Profiling
Gene Expression Regulation
Gene Function
Gene mapping
Gene Regulatory Networks
Genetic diversity
Genetic Markers - genetics
Genetic variation
Genome-wide association studies
Genome-Wide Association Study
Genomes
Human Genetics
Humans
Identification and classification
Lymphocytes - metabolism
Methods
Observations
Phenotype
Polymorphism, Single Nucleotide - genetics
Quantitative Trait Loci
Skin - metabolism
Software
Sparsity
Studies
technical-report
United Kingdom
title Tensor decomposition for multiple-tissue gene expression experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensor%20decomposition%20for%20multiple-tissue%20gene%20expression%20experiments&rft.jtitle=Nature%20genetics&rft.au=Hore,%20Victoria&rft.date=2016-09-01&rft.volume=48&rft.issue=9&rft.spage=1094&rft.epage=1100&rft.pages=1094-1100&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/ng.3624&rft_dat=%3Cgale_proqu%3EA461940436%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1847476663&rft_id=info:pmid/27479908&rft_galeid=A461940436&rfr_iscdi=true