Constrained Regression in Satellite Meteorology

Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology (1988) 1996-11, Vol.35 (11), p.2023-2035
Hauptverfasser: Crone, L. J., McMillin, L. M., Crosby, D. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2035
container_issue 11
container_start_page 2023
container_title Journal of applied meteorology (1988)
container_volume 35
creator Crone, L. J.
McMillin, L. M.
Crosby, D. S.
description Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.
doi_str_mv 10.1175/1520-0450(1996)035<2023:CRISM>2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18154940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26188192</jstor_id><sourcerecordid>26188192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f8a02f525fefff60a67442165a6a7940ca986c4ea9f28d74c42cbecfc963b5593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QdiDiB62nXzuRkWQxWqhpdDqOaRpUrZsNzXZHvrv3bXS0xzm8WZ4CA0wDDDO-BBzAikwDg9YSvEIlL8QIPSpmI8X01cygEExeyZnqHcCz1EPcsnSPBP0El3FuAEATFnWQ8PC17EJuqztKpnbdbAxlr5OyjpZ6MZWVdnYZGob64Ov_PpwjS6crqK9-Z999D16_yo-08nsY1y8TVJDBWlSl2sgjhPurHNOgBYZYwQLroXOJAOjZS4Ms1o6kq8yZhgxS2uckYIuOZe0j-6P3l3wP3sbG7Uto2n_0bX1-6hwjjlrRS04OoIm-BiDdWoXyq0OB4VBdb1Ul0F1GVTXS7W9VNdL_fVSRIEqZoq0orv_izoaXbmga1PGk40SAW3EFrs9YpvY-HBaE4HzHEtCfwGTz3dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18154940</pqid></control><display><type>article</type><title>Constrained Regression in Satellite Meteorology</title><source>JSTOR</source><creator>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</creator><creatorcontrib>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</creatorcontrib><description>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</description><identifier>ISSN: 0894-8763</identifier><identifier>EISSN: 1520-0450</identifier><identifier>DOI: 10.1175/1520-0450(1996)035&lt;2023:CRISM&gt;2.0.CO;2</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Brightness temperature ; Coefficients ; Covariance matrices ; Earth, ocean, space ; Error rates ; Estimators ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Hyperplanes ; Least squares ; Line segments ; Preliminary estimates ; Regression coefficients</subject><ispartof>Journal of applied meteorology (1988), 1996-11, Vol.35 (11), p.2023-2035</ispartof><rights>Copyright 1996, American Meteorological Society (AMS)</rights><rights>1996 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26188192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26188192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27926,27927,58019,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3260089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crone, L. J.</creatorcontrib><creatorcontrib>McMillin, L. M.</creatorcontrib><creatorcontrib>Crosby, D. S.</creatorcontrib><title>Constrained Regression in Satellite Meteorology</title><title>Journal of applied meteorology (1988)</title><description>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</description><subject>Brightness temperature</subject><subject>Coefficients</subject><subject>Covariance matrices</subject><subject>Earth, ocean, space</subject><subject>Error rates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Hyperplanes</subject><subject>Least squares</subject><subject>Line segments</subject><subject>Preliminary estimates</subject><subject>Regression coefficients</subject><issn>0894-8763</issn><issn>1520-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQQIMoWKs_QdiDiB62nXzuRkWQxWqhpdDqOaRpUrZsNzXZHvrv3bXS0xzm8WZ4CA0wDDDO-BBzAikwDg9YSvEIlL8QIPSpmI8X01cygEExeyZnqHcCz1EPcsnSPBP0El3FuAEATFnWQ8PC17EJuqztKpnbdbAxlr5OyjpZ6MZWVdnYZGob64Ov_PpwjS6crqK9-Z999D16_yo-08nsY1y8TVJDBWlSl2sgjhPurHNOgBYZYwQLroXOJAOjZS4Ms1o6kq8yZhgxS2uckYIuOZe0j-6P3l3wP3sbG7Uto2n_0bX1-6hwjjlrRS04OoIm-BiDdWoXyq0OB4VBdb1Ul0F1GVTXS7W9VNdL_fVSRIEqZoq0orv_izoaXbmga1PGk40SAW3EFrs9YpvY-HBaE4HzHEtCfwGTz3dA</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Crone, L. J.</creator><creator>McMillin, L. M.</creator><creator>Crosby, D. S.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19961101</creationdate><title>Constrained Regression in Satellite Meteorology</title><author>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f8a02f525fefff60a67442165a6a7940ca986c4ea9f28d74c42cbecfc963b5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Brightness temperature</topic><topic>Coefficients</topic><topic>Covariance matrices</topic><topic>Earth, ocean, space</topic><topic>Error rates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Hyperplanes</topic><topic>Least squares</topic><topic>Line segments</topic><topic>Preliminary estimates</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Crone, L. J.</creatorcontrib><creatorcontrib>McMillin, L. M.</creatorcontrib><creatorcontrib>Crosby, D. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of applied meteorology (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crone, L. J.</au><au>McMillin, L. M.</au><au>Crosby, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Regression in Satellite Meteorology</atitle><jtitle>Journal of applied meteorology (1988)</jtitle><date>1996-11-01</date><risdate>1996</risdate><volume>35</volume><issue>11</issue><spage>2023</spage><epage>2035</epage><pages>2023-2035</pages><issn>0894-8763</issn><eissn>1520-0450</eissn><coden>JOAMEZ</coden><abstract>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0450(1996)035&lt;2023:CRISM&gt;2.0.CO;2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8763
ispartof Journal of applied meteorology (1988), 1996-11, Vol.35 (11), p.2023-2035
issn 0894-8763
1520-0450
language eng
recordid cdi_proquest_miscellaneous_18154940
source JSTOR
subjects Brightness temperature
Coefficients
Covariance matrices
Earth, ocean, space
Error rates
Estimators
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Hyperplanes
Least squares
Line segments
Preliminary estimates
Regression coefficients
title Constrained Regression in Satellite Meteorology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Regression%20in%20Satellite%20Meteorology&rft.jtitle=Journal%20of%20applied%20meteorology%20(1988)&rft.au=Crone,%20L.%20J.&rft.date=1996-11-01&rft.volume=35&rft.issue=11&rft.spage=2023&rft.epage=2035&rft.pages=2023-2035&rft.issn=0894-8763&rft.eissn=1520-0450&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/1520-0450(1996)035%3C2023:CRISM%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26188192%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18154940&rft_id=info:pmid/&rft_jstor_id=26188192&rfr_iscdi=true