Constrained Regression in Satellite Meteorology
Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the app...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology (1988) 1996-11, Vol.35 (11), p.2023-2035 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2035 |
---|---|
container_issue | 11 |
container_start_page | 2023 |
container_title | Journal of applied meteorology (1988) |
container_volume | 35 |
creator | Crone, L. J. McMillin, L. M. Crosby, D. S. |
description | Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix. |
doi_str_mv | 10.1175/1520-0450(1996)035<2023:CRISM>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18154940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26188192</jstor_id><sourcerecordid>26188192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-f8a02f525fefff60a67442165a6a7940ca986c4ea9f28d74c42cbecfc963b5593</originalsourceid><addsrcrecordid>eNo9kE1LAzEQQIMoWKs_QdiDiB62nXzuRkWQxWqhpdDqOaRpUrZsNzXZHvrv3bXS0xzm8WZ4CA0wDDDO-BBzAikwDg9YSvEIlL8QIPSpmI8X01cygEExeyZnqHcCz1EPcsnSPBP0El3FuAEATFnWQ8PC17EJuqztKpnbdbAxlr5OyjpZ6MZWVdnYZGob64Ov_PpwjS6crqK9-Z999D16_yo-08nsY1y8TVJDBWlSl2sgjhPurHNOgBYZYwQLroXOJAOjZS4Ms1o6kq8yZhgxS2uckYIuOZe0j-6P3l3wP3sbG7Uto2n_0bX1-6hwjjlrRS04OoIm-BiDdWoXyq0OB4VBdb1Ul0F1GVTXS7W9VNdL_fVSRIEqZoq0orv_izoaXbmga1PGk40SAW3EFrs9YpvY-HBaE4HzHEtCfwGTz3dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18154940</pqid></control><display><type>article</type><title>Constrained Regression in Satellite Meteorology</title><source>JSTOR</source><creator>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</creator><creatorcontrib>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</creatorcontrib><description>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</description><identifier>ISSN: 0894-8763</identifier><identifier>EISSN: 1520-0450</identifier><identifier>DOI: 10.1175/1520-0450(1996)035<2023:CRISM>2.0.CO;2</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Brightness temperature ; Coefficients ; Covariance matrices ; Earth, ocean, space ; Error rates ; Estimators ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Hyperplanes ; Least squares ; Line segments ; Preliminary estimates ; Regression coefficients</subject><ispartof>Journal of applied meteorology (1988), 1996-11, Vol.35 (11), p.2023-2035</ispartof><rights>Copyright 1996, American Meteorological Society (AMS)</rights><rights>1996 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26188192$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26188192$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27926,27927,58019,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3260089$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Crone, L. J.</creatorcontrib><creatorcontrib>McMillin, L. M.</creatorcontrib><creatorcontrib>Crosby, D. S.</creatorcontrib><title>Constrained Regression in Satellite Meteorology</title><title>Journal of applied meteorology (1988)</title><description>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</description><subject>Brightness temperature</subject><subject>Coefficients</subject><subject>Covariance matrices</subject><subject>Earth, ocean, space</subject><subject>Error rates</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Hyperplanes</subject><subject>Least squares</subject><subject>Line segments</subject><subject>Preliminary estimates</subject><subject>Regression coefficients</subject><issn>0894-8763</issn><issn>1520-0450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQQIMoWKs_QdiDiB62nXzuRkWQxWqhpdDqOaRpUrZsNzXZHvrv3bXS0xzm8WZ4CA0wDDDO-BBzAikwDg9YSvEIlL8QIPSpmI8X01cygEExeyZnqHcCz1EPcsnSPBP0El3FuAEATFnWQ8PC17EJuqztKpnbdbAxlr5OyjpZ6MZWVdnYZGob64Ov_PpwjS6crqK9-Z999D16_yo-08nsY1y8TVJDBWlSl2sgjhPurHNOgBYZYwQLroXOJAOjZS4Ms1o6kq8yZhgxS2uckYIuOZe0j-6P3l3wP3sbG7Uto2n_0bX1-6hwjjlrRS04OoIm-BiDdWoXyq0OB4VBdb1Ul0F1GVTXS7W9VNdL_fVSRIEqZoq0orv_izoaXbmga1PGk40SAW3EFrs9YpvY-HBaE4HzHEtCfwGTz3dA</recordid><startdate>19961101</startdate><enddate>19961101</enddate><creator>Crone, L. J.</creator><creator>McMillin, L. M.</creator><creator>Crosby, D. S.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19961101</creationdate><title>Constrained Regression in Satellite Meteorology</title><author>Crone, L. J. ; McMillin, L. M. ; Crosby, D. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-f8a02f525fefff60a67442165a6a7940ca986c4ea9f28d74c42cbecfc963b5593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Brightness temperature</topic><topic>Coefficients</topic><topic>Covariance matrices</topic><topic>Earth, ocean, space</topic><topic>Error rates</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Hyperplanes</topic><topic>Least squares</topic><topic>Line segments</topic><topic>Preliminary estimates</topic><topic>Regression coefficients</topic><toplevel>online_resources</toplevel><creatorcontrib>Crone, L. J.</creatorcontrib><creatorcontrib>McMillin, L. M.</creatorcontrib><creatorcontrib>Crosby, D. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of applied meteorology (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crone, L. J.</au><au>McMillin, L. M.</au><au>Crosby, D. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Regression in Satellite Meteorology</atitle><jtitle>Journal of applied meteorology (1988)</jtitle><date>1996-11-01</date><risdate>1996</risdate><volume>35</volume><issue>11</issue><spage>2023</spage><epage>2035</epage><pages>2023-2035</pages><issn>0894-8763</issn><eissn>1520-0450</eissn><coden>JOAMEZ</coden><abstract>Least squares or regression techniques have been used for many problems in satellite meteorology. Because of the large number of variables and the linear dependence among these variables, colinearity causes significant problems in the application of standard regression techniques. In some of the applications there is prior knowledge about the values of the regression parameters. Since there are errors in the predictor variables as well as the predictand variables, the standard assumptions for ordinary least squares are not valid. In this paper the authors examine several techniques that have been developed to ameliorate the effects of colinearity or to make use of prior information. These include ridge regression, shrinkage estimators, rotated regression, and orthogonal regression. In order to illustrate the techniques and their properties, the authors apply them to two simple examples. These techniques are then applied to a real problem in satellite meteorology: that of estimating theoretical computed brightness temperatures from measured brightness temperatures. It is found that the rotated and the shrinkage estimators make good use of the prior information and help solve the colinearity problem. Ordinary least squares, ridge regression, and orthogonal regression give unsatisfactory results. Theoretical results for the various techniques are given in an appendix.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0450(1996)035<2023:CRISM>2.0.CO;2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8763 |
ispartof | Journal of applied meteorology (1988), 1996-11, Vol.35 (11), p.2023-2035 |
issn | 0894-8763 1520-0450 |
language | eng |
recordid | cdi_proquest_miscellaneous_18154940 |
source | JSTOR |
subjects | Brightness temperature Coefficients Covariance matrices Earth, ocean, space Error rates Estimators Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Hyperplanes Least squares Line segments Preliminary estimates Regression coefficients |
title | Constrained Regression in Satellite Meteorology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Regression%20in%20Satellite%20Meteorology&rft.jtitle=Journal%20of%20applied%20meteorology%20(1988)&rft.au=Crone,%20L.%20J.&rft.date=1996-11-01&rft.volume=35&rft.issue=11&rft.spage=2023&rft.epage=2035&rft.pages=2023-2035&rft.issn=0894-8763&rft.eissn=1520-0450&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/1520-0450(1996)035%3C2023:CRISM%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26188192%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18154940&rft_id=info:pmid/&rft_jstor_id=26188192&rfr_iscdi=true |