Acoustic scattering by atmospheric turbules
Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous tu...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 1997-08, Vol.102 (2), p.759-771 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 771 |
---|---|
container_issue | 2 |
container_start_page | 759 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 102 |
creator | Goedecke, George H Auvermann, Harry J |
description | Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves. |
doi_str_mv | 10.1121/1.419951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18144892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>301768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMoWFfBj9CTCNL1vTRJ847L4j9Y8KLnkKZZrbTbmqSH_fZW6t25DAM_hmEYu0ZYI3K8x7VAIoknLEPJodCSi1OWAQAWgpQ6Zxcxfs1R6pIydrdxwxRT6_LobEo-tIePvD7mNvVDHD_n7PI0hXrqfLxkZ3vbRX_15yv2_vjwtn0udq9PL9vNrnBcV6moFUkFJakKLAoshfazHGFFghqwgltQwCXnErVtkKzyKJsSSGpstChX7GbpHcPwPfmYTN9G57vOHvw81qBGITTx_0GFnADlDN4uoAtDjMHvzRja3oajQTC_txk0y23lDytTXF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16129015</pqid></control><display><type>article</type><title>Acoustic scattering by atmospheric turbules</title><source>AIP Acoustical Society of America</source><creator>Goedecke, George H ; Auvermann, Harry J</creator><creatorcontrib>Goedecke, George H ; Auvermann, Harry J</creatorcontrib><description>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.419951</identifier><language>eng</language><subject>Mathematical models ; Q1 ; Temperature ; Velocity</subject><ispartof>The Journal of the Acoustical Society of America, 1997-08, Vol.102 (2), p.759-771</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</citedby><cites>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Goedecke, George H</creatorcontrib><creatorcontrib>Auvermann, Harry J</creatorcontrib><title>Acoustic scattering by atmospheric turbules</title><title>The Journal of the Acoustical Society of America</title><description>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</description><subject>Mathematical models</subject><subject>Q1</subject><subject>Temperature</subject><subject>Velocity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMoWFfBj9CTCNL1vTRJ847L4j9Y8KLnkKZZrbTbmqSH_fZW6t25DAM_hmEYu0ZYI3K8x7VAIoknLEPJodCSi1OWAQAWgpQ6Zxcxfs1R6pIydrdxwxRT6_LobEo-tIePvD7mNvVDHD_n7PI0hXrqfLxkZ3vbRX_15yv2_vjwtn0udq9PL9vNrnBcV6moFUkFJakKLAoshfazHGFFghqwgltQwCXnErVtkKzyKJsSSGpstChX7GbpHcPwPfmYTN9G57vOHvw81qBGITTx_0GFnADlDN4uoAtDjMHvzRja3oajQTC_txk0y23lDytTXF0</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Goedecke, George H</creator><creator>Auvermann, Harry J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19970801</creationdate><title>Acoustic scattering by atmospheric turbules</title><author>Goedecke, George H ; Auvermann, Harry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Mathematical models</topic><topic>Q1</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goedecke, George H</creatorcontrib><creatorcontrib>Auvermann, Harry J</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goedecke, George H</au><au>Auvermann, Harry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic scattering by atmospheric turbules</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1997-08-01</date><risdate>1997</risdate><volume>102</volume><issue>2</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</abstract><doi>10.1121/1.419951</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 1997-08, Vol.102 (2), p.759-771 |
issn | 0001-4966 1520-8524 |
language | eng |
recordid | cdi_proquest_miscellaneous_18144892 |
source | AIP Acoustical Society of America |
subjects | Mathematical models Q1 Temperature Velocity |
title | Acoustic scattering by atmospheric turbules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20scattering%20by%20atmospheric%20turbules&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Goedecke,%20George%20H&rft.date=1997-08-01&rft.volume=102&rft.issue=2&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.419951&rft_dat=%3Cproquest_cross%3E301768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16129015&rft_id=info:pmid/&rfr_iscdi=true |