Acoustic scattering by atmospheric turbules

Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 1997-08, Vol.102 (2), p.759-771
Hauptverfasser: Goedecke, George H, Auvermann, Harry J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 771
container_issue 2
container_start_page 759
container_title The Journal of the Acoustical Society of America
container_volume 102
creator Goedecke, George H
Auvermann, Harry J
description Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.
doi_str_mv 10.1121/1.419951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18144892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>301768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMoWFfBj9CTCNL1vTRJ847L4j9Y8KLnkKZZrbTbmqSH_fZW6t25DAM_hmEYu0ZYI3K8x7VAIoknLEPJodCSi1OWAQAWgpQ6Zxcxfs1R6pIydrdxwxRT6_LobEo-tIePvD7mNvVDHD_n7PI0hXrqfLxkZ3vbRX_15yv2_vjwtn0udq9PL9vNrnBcV6moFUkFJakKLAoshfazHGFFghqwgltQwCXnErVtkKzyKJsSSGpstChX7GbpHcPwPfmYTN9G57vOHvw81qBGITTx_0GFnADlDN4uoAtDjMHvzRja3oajQTC_txk0y23lDytTXF0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16129015</pqid></control><display><type>article</type><title>Acoustic scattering by atmospheric turbules</title><source>AIP Acoustical Society of America</source><creator>Goedecke, George H ; Auvermann, Harry J</creator><creatorcontrib>Goedecke, George H ; Auvermann, Harry J</creatorcontrib><description>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</description><identifier>ISSN: 0001-4966</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/1.419951</identifier><language>eng</language><subject>Mathematical models ; Q1 ; Temperature ; Velocity</subject><ispartof>The Journal of the Acoustical Society of America, 1997-08, Vol.102 (2), p.759-771</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</citedby><cites>FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>207,314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Goedecke, George H</creatorcontrib><creatorcontrib>Auvermann, Harry J</creatorcontrib><title>Acoustic scattering by atmospheric turbules</title><title>The Journal of the Acoustical Society of America</title><description>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</description><subject>Mathematical models</subject><subject>Q1</subject><subject>Temperature</subject><subject>Velocity</subject><issn>0001-4966</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMoWFfBj9CTCNL1vTRJ847L4j9Y8KLnkKZZrbTbmqSH_fZW6t25DAM_hmEYu0ZYI3K8x7VAIoknLEPJodCSi1OWAQAWgpQ6Zxcxfs1R6pIydrdxwxRT6_LobEo-tIePvD7mNvVDHD_n7PI0hXrqfLxkZ3vbRX_15yv2_vjwtn0udq9PL9vNrnBcV6moFUkFJakKLAoshfazHGFFghqwgltQwCXnErVtkKzyKJsSSGpstChX7GbpHcPwPfmYTN9G57vOHvw81qBGITTx_0GFnADlDN4uoAtDjMHvzRja3oajQTC_txk0y23lDytTXF0</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Goedecke, George H</creator><creator>Auvermann, Harry J</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19970801</creationdate><title>Acoustic scattering by atmospheric turbules</title><author>Goedecke, George H ; Auvermann, Harry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-b6956039670a141348eeeec917949d0a42a0602522518ad19a6e15d309581d843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Mathematical models</topic><topic>Q1</topic><topic>Temperature</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goedecke, George H</creatorcontrib><creatorcontrib>Auvermann, Harry J</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goedecke, George H</au><au>Auvermann, Harry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic scattering by atmospheric turbules</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><date>1997-08-01</date><risdate>1997</risdate><volume>102</volume><issue>2</issue><spage>759</spage><epage>771</epage><pages>759-771</pages><issn>0001-4966</issn><eissn>1520-8524</eissn><abstract>Atmospheric turbulence is modeled as a collection of self-similar localized eddies, called turbules. Turbulent temperature variation and solenoidal velocity structure function spectra and the corresponding average acoustic scattering cross sections are calculated for several isotropic homogeneous turbule ensembles. Different scaling laws for turbule strengths, number densities, and sizes produce different power-law spectra independent of turbule morphology in an “inertial range” of the spectral variable K. For fractal size scaling and Kolmogorov power law ∝K−11/3 in the inertial range, not only do turbule strengths scale like the one-third power of the size, but also the turbule packing fractions are scale invariant, as are the expressions derived for the structure parameters (CT2,Cv2). The inertial range boundaries of the spectral variable and scattering angles are easily estimated from the inner and outer scales of the turbulence. They depend weakly on turbule morphology, while the spectra and cross sections outside the inertial ranges depend strongly on it. Scattering at angles outside the inertial range, which occurs in practical cases, is much weaker than predicted by the Kolmogorov spectrum. For Gaussian turbule ensembles, quasianalytic forms are obtained for the spectra and scattering cross sections and for the structure functions themselves.</abstract><doi>10.1121/1.419951</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 1997-08, Vol.102 (2), p.759-771
issn 0001-4966
1520-8524
language eng
recordid cdi_proquest_miscellaneous_18144892
source AIP Acoustical Society of America
subjects Mathematical models
Q1
Temperature
Velocity
title Acoustic scattering by atmospheric turbules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20scattering%20by%20atmospheric%20turbules&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Goedecke,%20George%20H&rft.date=1997-08-01&rft.volume=102&rft.issue=2&rft.spage=759&rft.epage=771&rft.pages=759-771&rft.issn=0001-4966&rft.eissn=1520-8524&rft_id=info:doi/10.1121/1.419951&rft_dat=%3Cproquest_cross%3E301768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16129015&rft_id=info:pmid/&rfr_iscdi=true