Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions
The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it...
Gespeichert in:
Veröffentlicht in: | Agricultural and forest meteorology 1996-12, Vol.82 (1), p.267-292 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 1 |
container_start_page | 267 |
container_title | Agricultural and forest meteorology |
container_volume | 82 |
creator | Grant, Richard H. Heisler, Gordon M. Gao, Wei |
description | The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.
For clear skies, the normalized sky radiance distribution (
N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as
N(Θ,ψ)=0.0361[6.3+
(1 +
cos
2Θ)
(1 −
cosψ)
][1 −
e
−0.31
secΘ
]
. The angle Ψ is defined by
cos ψ =
cosΘ
cosΘ∗ +
sinΘ
sinΘ∗
cosΦ
, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e
−2.5ψ
while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e
− 2.1ψ
. The obscured overcast sky condition (solar disk obscured) was best modeled as:
N(Θ) = 0.441
[1 + 4.6
cosΘ]
[1 + 4.6]
. The unit of
N for all equations is π Sr
−1, so that integration of each function over the sky hemisphere yields 1.0.
These equations can be applied directly to the sky diffuse irradiance on the horizontal,
I
diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from
N
a(
Θ,
ψ) =
I
diff
N(
Θ,
Φ). |
doi_str_mv | 10.1016/0168-1923(95)02327-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18144304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168192395023275</els_id><sourcerecordid>18144304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRcI3-AfEwBxE9jPb3THsQJJgoLOoh96a2usa0TqZjd-_C_nt7MyFHD0VRvE8VxcPYK8HfCy7sh1ZjL5xUb515x6WSQ28esY0YB9VLqfljtnlAnrJnpfzmXMhhcBuGP69TTeW41GuqEWGejz1gjQfqMoQINablY1f-HNdxQepCLDXH3f4UlW6_BModzgS5gyV06UAZodQO0xLiHfOcPZlgLvTivp-xq4svV-df--2Py2_nn7c9au1qH8aATpMEtUNBRk8m2J0wYMBpC5PW0moZnDCDdKNCM3ELOFgrkazYWXXG3qxnb3P6u6dS_U0sSPMMC6V98WIUWiuuG6hXEHMqJdPkb3O8gXz0gvuTUH-y5U-2vDP-Tqg3be31_X0oTdSUm41YHnaVVIPiY8NertgEycOv3JDvWzdwYUbewk9rSM3DIVL2BSM1qyFmwupDiv9_4h-lnZOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18144304</pqid></control><display><type>article</type><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</creator><creatorcontrib>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</creatorcontrib><description>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.
For clear skies, the normalized sky radiance distribution (
N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as
N(Θ,ψ)=0.0361[6.3+
(1 +
cos
2Θ)
(1 −
cosψ)
][1 −
e
−0.31
secΘ
]
. The angle Ψ is defined by
cos ψ =
cosΘ
cosΘ∗ +
sinΘ
sinΘ∗
cosΦ
, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e
−2.5ψ
while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e
− 2.1ψ
. The obscured overcast sky condition (solar disk obscured) was best modeled as:
N(Θ) = 0.441
[1 + 4.6
cosΘ]
[1 + 4.6]
. The unit of
N for all equations is π Sr
−1, so that integration of each function over the sky hemisphere yields 1.0.
These equations can be applied directly to the sky diffuse irradiance on the horizontal,
I
diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from
N
a(
Θ,
ψ) =
I
diff
N(
Θ,
Φ).</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/0168-1923(95)02327-5</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Climatology. Bioclimatology. Climate change ; CLOUDS ; Crop climate. Energy and radiation balances ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; FOTOSINTESIS ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Meteorology ; NUAGE ; NUBES ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; RADIACION ; RADIACION SOLAR ; RADIATION ; RADIATION SOLAIRE ; SOLAR RADIATION</subject><ispartof>Agricultural and forest meteorology, 1996-12, Vol.82 (1), p.267-292</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</citedby><cites>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0168-1923(95)02327-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3237308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, Richard H.</creatorcontrib><creatorcontrib>Heisler, Gordon M.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><title>Agricultural and forest meteorology</title><description>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.
For clear skies, the normalized sky radiance distribution (
N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as
N(Θ,ψ)=0.0361[6.3+
(1 +
cos
2Θ)
(1 −
cosψ)
][1 −
e
−0.31
secΘ
]
. The angle Ψ is defined by
cos ψ =
cosΘ
cosΘ∗ +
sinΘ
sinΘ∗
cosΦ
, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e
−2.5ψ
while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e
− 2.1ψ
. The obscured overcast sky condition (solar disk obscured) was best modeled as:
N(Θ) = 0.441
[1 + 4.6
cosΘ]
[1 + 4.6]
. The unit of
N for all equations is π Sr
−1, so that integration of each function over the sky hemisphere yields 1.0.
These equations can be applied directly to the sky diffuse irradiance on the horizontal,
I
diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from
N
a(
Θ,
ψ) =
I
diff
N(
Θ,
Φ).</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>CLOUDS</subject><subject>Crop climate. Energy and radiation balances</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>FOTOSINTESIS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Meteorology</subject><subject>NUAGE</subject><subject>NUBES</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>RADIACION</subject><subject>RADIACION SOLAR</subject><subject>RADIATION</subject><subject>RADIATION SOLAIRE</subject><subject>SOLAR RADIATION</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhtRcI3-AfEwBxE9jPb3THsQJJgoLOoh96a2usa0TqZjd-_C_nt7MyFHD0VRvE8VxcPYK8HfCy7sh1ZjL5xUb515x6WSQ28esY0YB9VLqfljtnlAnrJnpfzmXMhhcBuGP69TTeW41GuqEWGejz1gjQfqMoQINablY1f-HNdxQepCLDXH3f4UlW6_BModzgS5gyV06UAZodQO0xLiHfOcPZlgLvTivp-xq4svV-df--2Py2_nn7c9au1qH8aATpMEtUNBRk8m2J0wYMBpC5PW0moZnDCDdKNCM3ELOFgrkazYWXXG3qxnb3P6u6dS_U0sSPMMC6V98WIUWiuuG6hXEHMqJdPkb3O8gXz0gvuTUH-y5U-2vDP-Tqg3be31_X0oTdSUm41YHnaVVIPiY8NertgEycOv3JDvWzdwYUbewk9rSM3DIVL2BSM1qyFmwupDiv9_4h-lnZOU</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Grant, Richard H.</creator><creator>Heisler, Gordon M.</creator><creator>Gao, Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19961201</creationdate><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><author>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>CLOUDS</topic><topic>Crop climate. Energy and radiation balances</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>FOTOSINTESIS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Meteorology</topic><topic>NUAGE</topic><topic>NUBES</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>RADIACION</topic><topic>RADIACION SOLAR</topic><topic>RADIATION</topic><topic>RADIATION SOLAIRE</topic><topic>SOLAR RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, Richard H.</creatorcontrib><creatorcontrib>Heisler, Gordon M.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, Richard H.</au><au>Heisler, Gordon M.</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>82</volume><issue>1</issue><spage>267</spage><epage>292</epage><pages>267-292</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.
For clear skies, the normalized sky radiance distribution (
N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as
N(Θ,ψ)=0.0361[6.3+
(1 +
cos
2Θ)
(1 −
cosψ)
][1 −
e
−0.31
secΘ
]
. The angle Ψ is defined by
cos ψ =
cosΘ
cosΘ∗ +
sinΘ
sinΘ∗
cosΦ
, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e
−2.5ψ
while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as:
N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e
− 2.1ψ
. The obscured overcast sky condition (solar disk obscured) was best modeled as:
N(Θ) = 0.441
[1 + 4.6
cosΘ]
[1 + 4.6]
. The unit of
N for all equations is π Sr
−1, so that integration of each function over the sky hemisphere yields 1.0.
These equations can be applied directly to the sky diffuse irradiance on the horizontal,
I
diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from
N
a(
Θ,
ψ) =
I
diff
N(
Θ,
Φ).</abstract><cop>Amsterdam</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-1923(95)02327-5</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-1923 |
ispartof | Agricultural and forest meteorology, 1996-12, Vol.82 (1), p.267-292 |
issn | 0168-1923 1873-2240 |
language | eng |
recordid | cdi_proquest_miscellaneous_18144304 |
source | Access via ScienceDirect (Elsevier) |
subjects | Agricultural and forest climatology and meteorology. Irrigation. Drainage Agricultural and forest meteorology Agronomy. Soil science and plant productions Biological and medical sciences Climatology. Bioclimatology. Climate change CLOUDS Crop climate. Energy and radiation balances Earth, ocean, space Exact sciences and technology External geophysics FOTOSINTESIS Fundamental and applied biological sciences. Psychology General agronomy. Plant production Meteorology NUAGE NUBES PHOTOSYNTHESE PHOTOSYNTHESIS RADIACION RADIACION SOLAR RADIATION RADIATION SOLAIRE SOLAR RADIATION |
title | Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthetically-active%20radiation:%20sky%20radiance%20distributions%20under%20clear%20and%20overcast%20conditions&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Grant,%20Richard%20H.&rft.date=1996-12-01&rft.volume=82&rft.issue=1&rft.spage=267&rft.epage=292&rft.pages=267-292&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/0168-1923(95)02327-5&rft_dat=%3Cproquest_cross%3E18144304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18144304&rft_id=info:pmid/&rft_els_id=0168192395023275&rfr_iscdi=true |