Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions

The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural and forest meteorology 1996-12, Vol.82 (1), p.267-292
Hauptverfasser: Grant, Richard H., Heisler, Gordon M., Gao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 1
container_start_page 267
container_title Agricultural and forest meteorology
container_volume 82
creator Grant, Richard H.
Heisler, Gordon M.
Gao, Wei
description The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations. For clear skies, the normalized sky radiance distribution ( N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N(Θ,ψ)=0.0361[6.3+ (1 + cos 2Θ) (1 − cosψ) ][1 − e −0.31 secΘ ] . The angle Ψ is defined by cos ψ = cosΘ cosΘ∗ + sinΘ sinΘ∗ cosΦ , where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e − 2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6 cosΘ] [1 + 4.6] . The unit of N for all equations is π Sr −1, so that integration of each function over the sky hemisphere yields 1.0. These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a( Θ, ψ) = I diff N( Θ, Φ).
doi_str_mv 10.1016/0168-1923(95)02327-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18144304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0168192395023275</els_id><sourcerecordid>18144304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</originalsourceid><addsrcrecordid>eNp9kE1rFEEQhhtRcI3-AfEwBxE9jPb3THsQJJgoLOoh96a2usa0TqZjd-_C_nt7MyFHD0VRvE8VxcPYK8HfCy7sh1ZjL5xUb515x6WSQ28esY0YB9VLqfljtnlAnrJnpfzmXMhhcBuGP69TTeW41GuqEWGejz1gjQfqMoQINablY1f-HNdxQepCLDXH3f4UlW6_BModzgS5gyV06UAZodQO0xLiHfOcPZlgLvTivp-xq4svV-df--2Py2_nn7c9au1qH8aATpMEtUNBRk8m2J0wYMBpC5PW0moZnDCDdKNCM3ELOFgrkazYWXXG3qxnb3P6u6dS_U0sSPMMC6V98WIUWiuuG6hXEHMqJdPkb3O8gXz0gvuTUH-y5U-2vDP-Tqg3be31_X0oTdSUm41YHnaVVIPiY8NertgEycOv3JDvWzdwYUbewk9rSM3DIVL2BSM1qyFmwupDiv9_4h-lnZOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18144304</pqid></control><display><type>article</type><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><source>Access via ScienceDirect (Elsevier)</source><creator>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</creator><creatorcontrib>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</creatorcontrib><description>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations. For clear skies, the normalized sky radiance distribution ( N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N(Θ,ψ)=0.0361[6.3+ (1 + cos 2Θ) (1 − cosψ) ][1 − e −0.31 secΘ ] . The angle Ψ is defined by cos ψ = cosΘ cosΘ∗ + sinΘ sinΘ∗ cosΦ , where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e − 2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6 cosΘ] [1 + 4.6] . The unit of N for all equations is π Sr −1, so that integration of each function over the sky hemisphere yields 1.0. These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a( Θ, ψ) = I diff N( Θ, Φ).</description><identifier>ISSN: 0168-1923</identifier><identifier>EISSN: 1873-2240</identifier><identifier>DOI: 10.1016/0168-1923(95)02327-5</identifier><identifier>CODEN: AFMEEB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage ; Agricultural and forest meteorology ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Climatology. Bioclimatology. Climate change ; CLOUDS ; Crop climate. Energy and radiation balances ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; FOTOSINTESIS ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Meteorology ; NUAGE ; NUBES ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; RADIACION ; RADIACION SOLAR ; RADIATION ; RADIATION SOLAIRE ; SOLAR RADIATION</subject><ispartof>Agricultural and forest meteorology, 1996-12, Vol.82 (1), p.267-292</ispartof><rights>1996</rights><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</citedby><cites>FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0168-1923(95)02327-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3237308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, Richard H.</creatorcontrib><creatorcontrib>Heisler, Gordon M.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><title>Agricultural and forest meteorology</title><description>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations. For clear skies, the normalized sky radiance distribution ( N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N(Θ,ψ)=0.0361[6.3+ (1 + cos 2Θ) (1 − cosψ) ][1 − e −0.31 secΘ ] . The angle Ψ is defined by cos ψ = cosΘ cosΘ∗ + sinΘ sinΘ∗ cosΦ , where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e − 2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6 cosΘ] [1 + 4.6] . The unit of N for all equations is π Sr −1, so that integration of each function over the sky hemisphere yields 1.0. These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a( Θ, ψ) = I diff N( Θ, Φ).</description><subject>Agricultural and forest climatology and meteorology. Irrigation. Drainage</subject><subject>Agricultural and forest meteorology</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>CLOUDS</subject><subject>Crop climate. Energy and radiation balances</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>FOTOSINTESIS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Meteorology</subject><subject>NUAGE</subject><subject>NUBES</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>RADIACION</subject><subject>RADIACION SOLAR</subject><subject>RADIATION</subject><subject>RADIATION SOLAIRE</subject><subject>SOLAR RADIATION</subject><issn>0168-1923</issn><issn>1873-2240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFEEQhhtRcI3-AfEwBxE9jPb3THsQJJgoLOoh96a2usa0TqZjd-_C_nt7MyFHD0VRvE8VxcPYK8HfCy7sh1ZjL5xUb515x6WSQ28esY0YB9VLqfljtnlAnrJnpfzmXMhhcBuGP69TTeW41GuqEWGejz1gjQfqMoQINablY1f-HNdxQepCLDXH3f4UlW6_BModzgS5gyV06UAZodQO0xLiHfOcPZlgLvTivp-xq4svV-df--2Py2_nn7c9au1qH8aATpMEtUNBRk8m2J0wYMBpC5PW0moZnDCDdKNCM3ELOFgrkazYWXXG3qxnb3P6u6dS_U0sSPMMC6V98WIUWiuuG6hXEHMqJdPkb3O8gXz0gvuTUH-y5U-2vDP-Tqg3be31_X0oTdSUm41YHnaVVIPiY8NertgEycOv3JDvWzdwYUbewk9rSM3DIVL2BSM1qyFmwupDiv9_4h-lnZOU</recordid><startdate>19961201</startdate><enddate>19961201</enddate><creator>Grant, Richard H.</creator><creator>Heisler, Gordon M.</creator><creator>Gao, Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19961201</creationdate><title>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</title><author>Grant, Richard H. ; Heisler, Gordon M. ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-d8dc94e2a3bc1e54f5d6b15a5a946af442642d91572983c5f06ac7662ce61b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Agricultural and forest climatology and meteorology. Irrigation. Drainage</topic><topic>Agricultural and forest meteorology</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>CLOUDS</topic><topic>Crop climate. Energy and radiation balances</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>FOTOSINTESIS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Meteorology</topic><topic>NUAGE</topic><topic>NUBES</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>RADIACION</topic><topic>RADIACION SOLAR</topic><topic>RADIATION</topic><topic>RADIATION SOLAIRE</topic><topic>SOLAR RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, Richard H.</creatorcontrib><creatorcontrib>Heisler, Gordon M.</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Agricultural and forest meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, Richard H.</au><au>Heisler, Gordon M.</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions</atitle><jtitle>Agricultural and forest meteorology</jtitle><date>1996-12-01</date><risdate>1996</risdate><volume>82</volume><issue>1</issue><spage>267</spage><epage>292</epage><pages>267-292</pages><issn>0168-1923</issn><eissn>1873-2240</eissn><coden>AFMEEB</coden><abstract>The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations. For clear skies, the normalized sky radiance distribution ( N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N(Θ,ψ)=0.0361[6.3+ (1 + cos 2Θ) (1 − cosψ) ][1 − e −0.31 secΘ ] . The angle Ψ is defined by cos ψ = cosΘ cosΘ∗ + sinΘ sinΘ∗ cosΦ , where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e − 2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6 cosΘ] [1 + 4.6] . The unit of N for all equations is π Sr −1, so that integration of each function over the sky hemisphere yields 1.0. These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff, to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a( Θ, ψ) = I diff N( Θ, Φ).</abstract><cop>Amsterdam</cop><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/0168-1923(95)02327-5</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-1923
ispartof Agricultural and forest meteorology, 1996-12, Vol.82 (1), p.267-292
issn 0168-1923
1873-2240
language eng
recordid cdi_proquest_miscellaneous_18144304
source Access via ScienceDirect (Elsevier)
subjects Agricultural and forest climatology and meteorology. Irrigation. Drainage
Agricultural and forest meteorology
Agronomy. Soil science and plant productions
Biological and medical sciences
Climatology. Bioclimatology. Climate change
CLOUDS
Crop climate. Energy and radiation balances
Earth, ocean, space
Exact sciences and technology
External geophysics
FOTOSINTESIS
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Meteorology
NUAGE
NUBES
PHOTOSYNTHESE
PHOTOSYNTHESIS
RADIACION
RADIACION SOLAR
RADIATION
RADIATION SOLAIRE
SOLAR RADIATION
title Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photosynthetically-active%20radiation:%20sky%20radiance%20distributions%20under%20clear%20and%20overcast%20conditions&rft.jtitle=Agricultural%20and%20forest%20meteorology&rft.au=Grant,%20Richard%20H.&rft.date=1996-12-01&rft.volume=82&rft.issue=1&rft.spage=267&rft.epage=292&rft.pages=267-292&rft.issn=0168-1923&rft.eissn=1873-2240&rft.coden=AFMEEB&rft_id=info:doi/10.1016/0168-1923(95)02327-5&rft_dat=%3Cproquest_cross%3E18144304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18144304&rft_id=info:pmid/&rft_els_id=0168192395023275&rfr_iscdi=true