Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials
Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2016-08, Vol.55 (36), p.10672-10675 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10675 |
---|---|
container_issue | 36 |
container_start_page | 10672 |
container_title | Angewandte Chemie International Edition |
container_volume | 55 |
creator | Huang, Dazhen Wang, Chao Zou, Ye Shen, Xingxing Zang, Yaping Shen, Hongguang Gao, Xike Yi, Yuanping Xu, Wei Di, Chong-an Zhu, Daoben |
description | Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.
Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials. |
doi_str_mv | 10.1002/anie.201604478 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1814137507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907486599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0Eom3gyhFZ4sJlg8f2etfHtvQjqGkrUcTRcpxxsmF3HexdQf49rlIixAFO48PzPp7RS8gbYFNgjH-wfYNTzkAxKav6GTmGkkMhqko8z28pRFHVJRyRk5Q2ma9rpl6SI15JrbgWx2Rz1qRuHNZ01g8YvXWNbenHsG36FQ2e3sVV_sHRz51tWzoPLbqxxUR9iPS6Wa3pfQ6F2NneIe2LYbdF-rDG2AXM6BBzdG6zOFvTK_LC54Gvn-aEfLm8eDi_Lm7urmbnpzeFU8DromTcO4ceNAj0qPliqUoELZRbas2XFbde4oIDCKF1JetF7ZVFL5cgrXYoJuT93ruN4fuIaTBdkxy2re0xjMlADRJEVbIqo-_-QjdhjH3ezoBm2a1Krf9J1SBAS5mXmZDpnnIxpBTRm21sOht3Bph57Mo8dmUOXeXA2yftuOhwecB_l5MBvQd-NC3u_qMzp7eziz_lxT7bpAF_HrI2fjOqysebr7dX5v5sDqVUn4wQvwDUPq7S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813194411</pqid></control><display><type>article</type><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</creator><creatorcontrib>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</creatorcontrib><description>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.
Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201604478</identifier><identifier>PMID: 27496293</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bismuth ; chemical doping ; Coefficients ; Conductivity ; Doping ; Electrical conductivity ; Electrical resistivity ; Electronics industry ; interfacial doping ; Maximum power ; Metals ; n-type materials ; Organic semiconductors ; Power factor ; Semiconductors ; Thermoelectric materials ; thermoelectrics ; Tuning</subject><ispartof>Angewandte Chemie International Edition, 2016-08, Vol.55 (36), p.10672-10675</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</citedby><cites>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</cites><orcidid>0000-0002-6183-1321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201604478$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201604478$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27496293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Dazhen</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zou, Ye</creatorcontrib><creatorcontrib>Shen, Xingxing</creatorcontrib><creatorcontrib>Zang, Yaping</creatorcontrib><creatorcontrib>Shen, Hongguang</creatorcontrib><creatorcontrib>Gao, Xike</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Di, Chong-an</creatorcontrib><creatorcontrib>Zhu, Daoben</creatorcontrib><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.
Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</description><subject>Bismuth</subject><subject>chemical doping</subject><subject>Coefficients</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics industry</subject><subject>interfacial doping</subject><subject>Maximum power</subject><subject>Metals</subject><subject>n-type materials</subject><subject>Organic semiconductors</subject><subject>Power factor</subject><subject>Semiconductors</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Tuning</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0Eom3gyhFZ4sJlg8f2etfHtvQjqGkrUcTRcpxxsmF3HexdQf49rlIixAFO48PzPp7RS8gbYFNgjH-wfYNTzkAxKav6GTmGkkMhqko8z28pRFHVJRyRk5Q2ma9rpl6SI15JrbgWx2Rz1qRuHNZ01g8YvXWNbenHsG36FQ2e3sVV_sHRz51tWzoPLbqxxUR9iPS6Wa3pfQ6F2NneIe2LYbdF-rDG2AXM6BBzdG6zOFvTK_LC54Gvn-aEfLm8eDi_Lm7urmbnpzeFU8DromTcO4ceNAj0qPliqUoELZRbas2XFbde4oIDCKF1JetF7ZVFL5cgrXYoJuT93ruN4fuIaTBdkxy2re0xjMlADRJEVbIqo-_-QjdhjH3ezoBm2a1Krf9J1SBAS5mXmZDpnnIxpBTRm21sOht3Bph57Mo8dmUOXeXA2yftuOhwecB_l5MBvQd-NC3u_qMzp7eziz_lxT7bpAF_HrI2fjOqysebr7dX5v5sDqVUn4wQvwDUPq7S</recordid><startdate>20160826</startdate><enddate>20160826</enddate><creator>Huang, Dazhen</creator><creator>Wang, Chao</creator><creator>Zou, Ye</creator><creator>Shen, Xingxing</creator><creator>Zang, Yaping</creator><creator>Shen, Hongguang</creator><creator>Gao, Xike</creator><creator>Yi, Yuanping</creator><creator>Xu, Wei</creator><creator>Di, Chong-an</creator><creator>Zhu, Daoben</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6183-1321</orcidid></search><sort><creationdate>20160826</creationdate><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><author>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>chemical doping</topic><topic>Coefficients</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics industry</topic><topic>interfacial doping</topic><topic>Maximum power</topic><topic>Metals</topic><topic>n-type materials</topic><topic>Organic semiconductors</topic><topic>Power factor</topic><topic>Semiconductors</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dazhen</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zou, Ye</creatorcontrib><creatorcontrib>Shen, Xingxing</creatorcontrib><creatorcontrib>Zang, Yaping</creatorcontrib><creatorcontrib>Shen, Hongguang</creatorcontrib><creatorcontrib>Gao, Xike</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Di, Chong-an</creatorcontrib><creatorcontrib>Zhu, Daoben</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dazhen</au><au>Wang, Chao</au><au>Zou, Ye</au><au>Shen, Xingxing</au><au>Zang, Yaping</au><au>Shen, Hongguang</au><au>Gao, Xike</au><au>Yi, Yuanping</au><au>Xu, Wei</au><au>Di, Chong-an</au><au>Zhu, Daoben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-08-26</date><risdate>2016</risdate><volume>55</volume><issue>36</issue><spage>10672</spage><epage>10675</epage><pages>10672-10675</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.
Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27496293</pmid><doi>10.1002/anie.201604478</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6183-1321</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2016-08, Vol.55 (36), p.10672-10675 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1814137507 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bismuth chemical doping Coefficients Conductivity Doping Electrical conductivity Electrical resistivity Electronics industry interfacial doping Maximum power Metals n-type materials Organic semiconductors Power factor Semiconductors Thermoelectric materials thermoelectrics Tuning |
title | Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20Interfacial%20Doping%20of%20Organic%20Small%20Molecules%20for%20High%20Performance%20n-type%20Thermoelectric%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Huang,%20Dazhen&rft.date=2016-08-26&rft.volume=55&rft.issue=36&rft.spage=10672&rft.epage=10675&rft.pages=10672-10675&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201604478&rft_dat=%3Cproquest_cross%3E1907486599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813194411&rft_id=info:pmid/27496293&rfr_iscdi=true |