Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials

Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2016-08, Vol.55 (36), p.10672-10675
Hauptverfasser: Huang, Dazhen, Wang, Chao, Zou, Ye, Shen, Xingxing, Zang, Yaping, Shen, Hongguang, Gao, Xike, Yi, Yuanping, Xu, Wei, Di, Chong-an, Zhu, Daoben
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10675
container_issue 36
container_start_page 10672
container_title Angewandte Chemie International Edition
container_volume 55
creator Huang, Dazhen
Wang, Chao
Zou, Ye
Shen, Xingxing
Zang, Yaping
Shen, Hongguang
Gao, Xike
Yi, Yuanping
Xu, Wei
Di, Chong-an
Zhu, Daoben
description Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.
doi_str_mv 10.1002/anie.201604478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1814137507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1907486599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0Eom3gyhFZ4sJlg8f2etfHtvQjqGkrUcTRcpxxsmF3HexdQf49rlIixAFO48PzPp7RS8gbYFNgjH-wfYNTzkAxKav6GTmGkkMhqko8z28pRFHVJRyRk5Q2ma9rpl6SI15JrbgWx2Rz1qRuHNZ01g8YvXWNbenHsG36FQ2e3sVV_sHRz51tWzoPLbqxxUR9iPS6Wa3pfQ6F2NneIe2LYbdF-rDG2AXM6BBzdG6zOFvTK_LC54Gvn-aEfLm8eDi_Lm7urmbnpzeFU8DromTcO4ceNAj0qPliqUoELZRbas2XFbde4oIDCKF1JetF7ZVFL5cgrXYoJuT93ruN4fuIaTBdkxy2re0xjMlADRJEVbIqo-_-QjdhjH3ezoBm2a1Krf9J1SBAS5mXmZDpnnIxpBTRm21sOht3Bph57Mo8dmUOXeXA2yftuOhwecB_l5MBvQd-NC3u_qMzp7eziz_lxT7bpAF_HrI2fjOqysebr7dX5v5sDqVUn4wQvwDUPq7S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813194411</pqid></control><display><type>article</type><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</creator><creatorcontrib>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</creatorcontrib><description>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201604478</identifier><identifier>PMID: 27496293</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bismuth ; chemical doping ; Coefficients ; Conductivity ; Doping ; Electrical conductivity ; Electrical resistivity ; Electronics industry ; interfacial doping ; Maximum power ; Metals ; n-type materials ; Organic semiconductors ; Power factor ; Semiconductors ; Thermoelectric materials ; thermoelectrics ; Tuning</subject><ispartof>Angewandte Chemie International Edition, 2016-08, Vol.55 (36), p.10672-10675</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</citedby><cites>FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</cites><orcidid>0000-0002-6183-1321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201604478$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201604478$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27496293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Dazhen</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zou, Ye</creatorcontrib><creatorcontrib>Shen, Xingxing</creatorcontrib><creatorcontrib>Zang, Yaping</creatorcontrib><creatorcontrib>Shen, Hongguang</creatorcontrib><creatorcontrib>Gao, Xike</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Di, Chong-an</creatorcontrib><creatorcontrib>Zhu, Daoben</creatorcontrib><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</description><subject>Bismuth</subject><subject>chemical doping</subject><subject>Coefficients</subject><subject>Conductivity</subject><subject>Doping</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics industry</subject><subject>interfacial doping</subject><subject>Maximum power</subject><subject>Metals</subject><subject>n-type materials</subject><subject>Organic semiconductors</subject><subject>Power factor</subject><subject>Semiconductors</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><subject>Tuning</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0Eom3gyhFZ4sJlg8f2etfHtvQjqGkrUcTRcpxxsmF3HexdQf49rlIixAFO48PzPp7RS8gbYFNgjH-wfYNTzkAxKav6GTmGkkMhqko8z28pRFHVJRyRk5Q2ma9rpl6SI15JrbgWx2Rz1qRuHNZ01g8YvXWNbenHsG36FQ2e3sVV_sHRz51tWzoPLbqxxUR9iPS6Wa3pfQ6F2NneIe2LYbdF-rDG2AXM6BBzdG6zOFvTK_LC54Gvn-aEfLm8eDi_Lm7urmbnpzeFU8DromTcO4ceNAj0qPliqUoELZRbas2XFbde4oIDCKF1JetF7ZVFL5cgrXYoJuT93ruN4fuIaTBdkxy2re0xjMlADRJEVbIqo-_-QjdhjH3ezoBm2a1Krf9J1SBAS5mXmZDpnnIxpBTRm21sOht3Bph57Mo8dmUOXeXA2yftuOhwecB_l5MBvQd-NC3u_qMzp7eziz_lxT7bpAF_HrI2fjOqysebr7dX5v5sDqVUn4wQvwDUPq7S</recordid><startdate>20160826</startdate><enddate>20160826</enddate><creator>Huang, Dazhen</creator><creator>Wang, Chao</creator><creator>Zou, Ye</creator><creator>Shen, Xingxing</creator><creator>Zang, Yaping</creator><creator>Shen, Hongguang</creator><creator>Gao, Xike</creator><creator>Yi, Yuanping</creator><creator>Xu, Wei</creator><creator>Di, Chong-an</creator><creator>Zhu, Daoben</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6183-1321</orcidid></search><sort><creationdate>20160826</creationdate><title>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</title><author>Huang, Dazhen ; Wang, Chao ; Zou, Ye ; Shen, Xingxing ; Zang, Yaping ; Shen, Hongguang ; Gao, Xike ; Yi, Yuanping ; Xu, Wei ; Di, Chong-an ; Zhu, Daoben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6128-502fccef1913efe92bd65e1936cd992d72af4eb2113399748b8f6aef4d14a9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>chemical doping</topic><topic>Coefficients</topic><topic>Conductivity</topic><topic>Doping</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics industry</topic><topic>interfacial doping</topic><topic>Maximum power</topic><topic>Metals</topic><topic>n-type materials</topic><topic>Organic semiconductors</topic><topic>Power factor</topic><topic>Semiconductors</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Dazhen</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zou, Ye</creatorcontrib><creatorcontrib>Shen, Xingxing</creatorcontrib><creatorcontrib>Zang, Yaping</creatorcontrib><creatorcontrib>Shen, Hongguang</creatorcontrib><creatorcontrib>Gao, Xike</creatorcontrib><creatorcontrib>Yi, Yuanping</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Di, Chong-an</creatorcontrib><creatorcontrib>Zhu, Daoben</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Dazhen</au><au>Wang, Chao</au><au>Zou, Ye</au><au>Shen, Xingxing</au><au>Zang, Yaping</au><au>Shen, Hongguang</au><au>Gao, Xike</au><au>Yi, Yuanping</au><au>Xu, Wei</au><au>Di, Chong-an</au><au>Zhu, Daoben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2016-08-26</date><risdate>2016</risdate><volume>55</volume><issue>36</issue><spage>10672</spage><epage>10675</epage><pages>10672-10675</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Development of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials. Interfacial doping for organic thermoelectrics: Bismuth interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal molecules results in a maximum power factor (PFmax) of 113 μW m−1 K−2. Heavy metal doping of organic semiconductors can open up a new strategy for exploring high performance organic thermoelectric materials.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27496293</pmid><doi>10.1002/anie.201604478</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-6183-1321</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2016-08, Vol.55 (36), p.10672-10675
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1814137507
source Wiley Online Library Journals Frontfile Complete
subjects Bismuth
chemical doping
Coefficients
Conductivity
Doping
Electrical conductivity
Electrical resistivity
Electronics industry
interfacial doping
Maximum power
Metals
n-type materials
Organic semiconductors
Power factor
Semiconductors
Thermoelectric materials
thermoelectrics
Tuning
title Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismuth%20Interfacial%20Doping%20of%20Organic%20Small%20Molecules%20for%20High%20Performance%20n-type%20Thermoelectric%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Huang,%20Dazhen&rft.date=2016-08-26&rft.volume=55&rft.issue=36&rft.spage=10672&rft.epage=10675&rft.pages=10672-10675&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201604478&rft_dat=%3Cproquest_cross%3E1907486599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813194411&rft_id=info:pmid/27496293&rfr_iscdi=true