High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields
A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2016-08, Vol.8 (33), p.21228-21235 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21235 |
---|---|
container_issue | 33 |
container_start_page | 21228 |
container_title | ACS applied materials & interfaces |
container_volume | 8 |
creator | Wassermann, Klemens J Barth, Sven Keplinger, Franz Noehammer, Christa Peham, Johannes R |
description | A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry. |
doi_str_mv | 10.1021/acsami.6b06927 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1814134859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1814134859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-d74fec1aa9a25df11bf8866a8bdcc7fc8f9c3804ad530066c096a69283d30333</originalsourceid><addsrcrecordid>eNp1kE1PwyAAhonRuDm9ejQcjUknFEqpN1M3t2RRE3cnFOhk9mOWdclu_gX_or9EtNtuniDkeZ_wvgBcYjTEKMS3UjlZ2iHLEEvC-Aj0cUJpwMMoPD7cKe2BM-eWCDESougU9MKYMsaSuA_KiV28fX9-vcMHawqj1o1V8EU6ZzdybevqDj7VG1PAtK6c1ab5e3RwVMmssNUCpqYo4OvKKJv74GzrrIPTSrfKaJht4WivHHu7dufgJJeFMxe7cwDm49E8nQSz58dpej8LJCFoHeiY5kZhKRMZRjrHOMs5Z0zyTCsV54rniSIcUakj4ksxhRImfX9ONEGEkAG47rSrpv5ojVuL0jrlfyorU7dOYI4pJpRHiUeHHaqa2rnG5GLV2FI2W4GR-F1YdAuL3cI-cLVzt1lp9AHfT-qBmw7wQbGs26byTf-z_QBVN4fU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1814134859</pqid></control><display><type>article</type><title>High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wassermann, Klemens J ; Barth, Sven ; Keplinger, Franz ; Noehammer, Christa ; Peham, Johannes R</creator><creatorcontrib>Wassermann, Klemens J ; Barth, Sven ; Keplinger, Franz ; Noehammer, Christa ; Peham, Johannes R</creatorcontrib><description>A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b06927</identifier><identifier>PMID: 27466697</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Death ; Electricity ; Electrodes ; Gram-Negative Bacteria ; Microfluidics</subject><ispartof>ACS applied materials & interfaces, 2016-08, Vol.8 (33), p.21228-21235</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-d74fec1aa9a25df11bf8866a8bdcc7fc8f9c3804ad530066c096a69283d30333</citedby><cites>FETCH-LOGICAL-a330t-d74fec1aa9a25df11bf8866a8bdcc7fc8f9c3804ad530066c096a69283d30333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b06927$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b06927$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27466697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wassermann, Klemens J</creatorcontrib><creatorcontrib>Barth, Sven</creatorcontrib><creatorcontrib>Keplinger, Franz</creatorcontrib><creatorcontrib>Noehammer, Christa</creatorcontrib><creatorcontrib>Peham, Johannes R</creatorcontrib><title>High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry.</description><subject>Cell Death</subject><subject>Electricity</subject><subject>Electrodes</subject><subject>Gram-Negative Bacteria</subject><subject>Microfluidics</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1PwyAAhonRuDm9ejQcjUknFEqpN1M3t2RRE3cnFOhk9mOWdclu_gX_or9EtNtuniDkeZ_wvgBcYjTEKMS3UjlZ2iHLEEvC-Aj0cUJpwMMoPD7cKe2BM-eWCDESougU9MKYMsaSuA_KiV28fX9-vcMHawqj1o1V8EU6ZzdybevqDj7VG1PAtK6c1ab5e3RwVMmssNUCpqYo4OvKKJv74GzrrIPTSrfKaJht4WivHHu7dufgJJeFMxe7cwDm49E8nQSz58dpej8LJCFoHeiY5kZhKRMZRjrHOMs5Z0zyTCsV54rniSIcUakj4ksxhRImfX9ONEGEkAG47rSrpv5ojVuL0jrlfyorU7dOYI4pJpRHiUeHHaqa2rnG5GLV2FI2W4GR-F1YdAuL3cI-cLVzt1lp9AHfT-qBmw7wQbGs26byTf-z_QBVN4fU</recordid><startdate>20160824</startdate><enddate>20160824</enddate><creator>Wassermann, Klemens J</creator><creator>Barth, Sven</creator><creator>Keplinger, Franz</creator><creator>Noehammer, Christa</creator><creator>Peham, Johannes R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160824</creationdate><title>High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields</title><author>Wassermann, Klemens J ; Barth, Sven ; Keplinger, Franz ; Noehammer, Christa ; Peham, Johannes R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-d74fec1aa9a25df11bf8866a8bdcc7fc8f9c3804ad530066c096a69283d30333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Death</topic><topic>Electricity</topic><topic>Electrodes</topic><topic>Gram-Negative Bacteria</topic><topic>Microfluidics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wassermann, Klemens J</creatorcontrib><creatorcontrib>Barth, Sven</creatorcontrib><creatorcontrib>Keplinger, Franz</creatorcontrib><creatorcontrib>Noehammer, Christa</creatorcontrib><creatorcontrib>Peham, Johannes R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wassermann, Klemens J</au><au>Barth, Sven</au><au>Keplinger, Franz</au><au>Noehammer, Christa</au><au>Peham, Johannes R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-08-24</date><risdate>2016</risdate><volume>8</volume><issue>33</issue><spage>21228</spage><epage>21235</epage><pages>21228-21235</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27466697</pmid><doi>10.1021/acsami.6b06927</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2016-08, Vol.8 (33), p.21228-21235 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1814134859 |
source | MEDLINE; ACS Publications |
subjects | Cell Death Electricity Electrodes Gram-Negative Bacteria Microfluidics |
title | High‑k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%91k%20Dielectric%20Passivation:%20Novel%20Considerations%20Enabling%20Cell%20Specific%20Lysis%20Induced%20by%20Electric%20Fields&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wassermann,%20Klemens%20J&rft.date=2016-08-24&rft.volume=8&rft.issue=33&rft.spage=21228&rft.epage=21235&rft.pages=21228-21235&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b06927&rft_dat=%3Cproquest_cross%3E1814134859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1814134859&rft_id=info:pmid/27466697&rfr_iscdi=true |