Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions

While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-08, Vol.10 (8), p.7467-7475
Hauptverfasser: Kim, Donghyuk, Garner, Omai B, Ozcan, Aydogan, Di Carlo, Dino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7475
container_issue 8
container_start_page 7467
container_title ACS nano
container_volume 10
creator Kim, Donghyuk
Garner, Omai B
Ozcan, Aydogan
Di Carlo, Dino
description While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.
doi_str_mv 10.1021/acsnano.6b02060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1813899868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1813899868</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-ec8dbef5cdd85bb79ca07cef7e06524d61b9811239771a47e2893e015a379c2c3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRbK2evUmOgqTdj2Y_jrWttljwouAtbDYTSUl2424i9N8b29qbpxmY531hHoRuCR4TTMlEm2C1dWOeYYo5PkNDohiPseQf56c9IQN0FcIW40RIwS_RgIopp0olQ_SycrX7BAuuC9HStt41u3jhy2-w0axuqrIoIY8W0IJpS2cjV0SPZR-pwHSV9tHatuD1_hau0UWhqwA3xzlC70_Lt_kq3rw-r-ezTawZY20MRuYZFInJc5lkmVBGY2GgEIB5Qqc5J5mShFCmhCB6KoBKxQCTRLOepYaN0P2ht_Huq4PQpnUZDFSV3r-REkmYVEpy2aOTA2q8C8FDkTa-rLXfpQSnvwbTo8H0aLBP3B3Lu6yG_MT_KeuBhwPQJ9Ot67ztf_237gfcmH0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1813899868</pqid></control><display><type>article</type><title>Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kim, Donghyuk ; Garner, Omai B ; Ozcan, Aydogan ; Di Carlo, Dino</creator><creatorcontrib>Kim, Donghyuk ; Garner, Omai B ; Ozcan, Aydogan ; Di Carlo, Dino</creatorcontrib><description>While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b02060</identifier><identifier>PMID: 27462995</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA ; Entropy ; Nanotechnology ; Nucleic Acid Hybridization ; Nucleic Acids</subject><ispartof>ACS nano, 2016-08, Vol.10 (8), p.7467-7475</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-ec8dbef5cdd85bb79ca07cef7e06524d61b9811239771a47e2893e015a379c2c3</citedby><cites>FETCH-LOGICAL-a333t-ec8dbef5cdd85bb79ca07cef7e06524d61b9811239771a47e2893e015a379c2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b02060$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b02060$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27462995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><creatorcontrib>Di Carlo, Dino</creatorcontrib><title>Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.</description><subject>DNA</subject><subject>Entropy</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Hybridization</subject><subject>Nucleic Acids</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AQhhdRbK2evUmOgqTdj2Y_jrWttljwouAtbDYTSUl2424i9N8b29qbpxmY531hHoRuCR4TTMlEm2C1dWOeYYo5PkNDohiPseQf56c9IQN0FcIW40RIwS_RgIopp0olQ_SycrX7BAuuC9HStt41u3jhy2-w0axuqrIoIY8W0IJpS2cjV0SPZR-pwHSV9tHatuD1_hau0UWhqwA3xzlC70_Lt_kq3rw-r-ezTawZY20MRuYZFInJc5lkmVBGY2GgEIB5Qqc5J5mShFCmhCB6KoBKxQCTRLOepYaN0P2ht_Huq4PQpnUZDFSV3r-REkmYVEpy2aOTA2q8C8FDkTa-rLXfpQSnvwbTo8H0aLBP3B3Lu6yG_MT_KeuBhwPQJ9Ot67ztf_237gfcmH0o</recordid><startdate>20160823</startdate><enddate>20160823</enddate><creator>Kim, Donghyuk</creator><creator>Garner, Omai B</creator><creator>Ozcan, Aydogan</creator><creator>Di Carlo, Dino</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160823</creationdate><title>Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions</title><author>Kim, Donghyuk ; Garner, Omai B ; Ozcan, Aydogan ; Di Carlo, Dino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-ec8dbef5cdd85bb79ca07cef7e06524d61b9811239771a47e2893e015a379c2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>DNA</topic><topic>Entropy</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Hybridization</topic><topic>Nucleic Acids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Donghyuk</creatorcontrib><creatorcontrib>Garner, Omai B</creatorcontrib><creatorcontrib>Ozcan, Aydogan</creatorcontrib><creatorcontrib>Di Carlo, Dino</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Donghyuk</au><au>Garner, Omai B</au><au>Ozcan, Aydogan</au><au>Di Carlo, Dino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-08-23</date><risdate>2016</risdate><volume>10</volume><issue>8</issue><spage>7467</spage><epage>7475</epage><pages>7467-7475</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>While a range of artificial biochemical circuits is likely to play a significant role in biological engineering, one of the challenges in the field is the design of circuits that can transduce between biomolecule classes (e.g., moving beyond nucleic acid only circuits). Herein, we design a transduction mechanism whereby a protein signal is transduced into an amplified nucleic acid output using DNA nanotechnology. In this system, a protein is recognized by nucleic acid bound recognition elements to form a catalytic complex that drives a hybridization/displacement reaction on a multicomponent nucleic acid substrate, releasing multiple target single-stranded oligonucleotides in an amplified fashion. Amplification power and simple one-pot reaction conditions lead us to apply the scheme in an assay format, achieving homogeneous and rapid (∼10 min) analyte detection that is also robust (operable in whole blood and plasma). In addition, we demonstrate the assay in a microfluidic digital assay format leading to improved quantification and sensitivity approaching single-molecule levels. The present scheme we believe will have a significant impact on a range of applications from fundamental molecular interaction studies to design of artificial circuits in vivo to high-throughput, multiplexed assays for screening or point-of-care diagnostics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27462995</pmid><doi>10.1021/acsnano.6b02060</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-08, Vol.10 (8), p.7467-7475
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1813899868
source ACS Publications; MEDLINE
subjects DNA
Entropy
Nanotechnology
Nucleic Acid Hybridization
Nucleic Acids
title Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20Entropy-Driven%20Amplified%20Detection%20of%20Biomolecular%20Interactions&rft.jtitle=ACS%20nano&rft.au=Kim,%20Donghyuk&rft.date=2016-08-23&rft.volume=10&rft.issue=8&rft.spage=7467&rft.epage=7475&rft.pages=7467-7475&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b02060&rft_dat=%3Cproquest_cross%3E1813899868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1813899868&rft_id=info:pmid/27462995&rfr_iscdi=true