Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager

A Special Sensor Microwave/Imager (SSM/I) algorithm is developed to measure both cloud liquid water path (LWP) and cloud frequency (CF) over the oceans. For climate analysis, the LWP and CF parameters are computed on pentad and monthly timescales. Comparisons are made between cloud frequencies obtai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 1997-05, Vol.10 (5), p.1086-1098
Hauptverfasser: Weng, Fuzhong, Grody, Norman C., Ferraro, Ralph, Basist, Alan, Forsyth, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1098
container_issue 5
container_start_page 1086
container_title Journal of climate
container_volume 10
creator Weng, Fuzhong
Grody, Norman C.
Ferraro, Ralph
Basist, Alan
Forsyth, David
description A Special Sensor Microwave/Imager (SSM/I) algorithm is developed to measure both cloud liquid water path (LWP) and cloud frequency (CF) over the oceans. For climate analysis, the LWP and CF parameters are computed on pentad and monthly timescales. Comparisons are made between cloud frequencies obtained from microwave and visible/infrared measurements. It is shown that the SSM/I CF correlates with International Satellite Cloud Climatology Program low- and middle-level cloudiness. Interannual variations of monthly LWP are found to be strongly correlated with El Niño and La Niña events. In general, positive LWP anomalies are associated with positive SST anomalies. However, positive LWP anomalies may also occur in regions of negative SST anomalies. This is probably due to an increase in warm top rain clouds, produced from low-level convergence. When pentads of outgoing longwave radiation data are compared to the LWP, they both show the detailed structure for atmospheric intraseasonal oscillations at 30–60-day periods. However, there are some interesting differences. Finally, as an important application, the monthly LWP is compared with simulations from a general circulation model. While the simulation captures the locations of observed maxima and minima, there is a large discrepancy between the model and measurement for the Northern Hemisphere in summer.
doi_str_mv 10.1175/1520-0442(1997)010<1086:CLWCFT>2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18134795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26243211</jstor_id><sourcerecordid>26243211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-80e9bc03c8eb3d4c6b5f004120c521a6ec5eba477b11facbb888b1cdaad7e4753</originalsourceid><addsrcrecordid>eNpNkN9LwzAQx4MoOH_8CUIfRPSh212aNqmKIMXNwWQPKj6GNE210i4z6ZT997ZUhk8Hdx--d_chZIIwRuTxBGMKITBGLzFN-RUg3CKI5DpbvGXTlzs6hnG2vKF7ZLQj98kIRMpCweP4kBx5_wmANAEYkVlW200RLKqvTVUEb6o1LsjqqlGtre37NiidbYL2wwTPa6MrVQfPZuWtC54q7eyP-jaTeaPejTshB6WqvTn9q8fkdfrwkj2Gi-Vsnt0vQh0lrA0FmDTXEGlh8qhgOsnjEoAhBR1TVInRsckV4zxHLJXOcyFEjrpQquCG8Tg6JhdD7trZr43xrWwqr01dq5WxGy9RYMR42oOzAezu9N6ZUq5d95bbSgTZi5S9Htnrkb1ICX2_EykHkZJKkNlS0i7p_G-l8lrVpVMrXfldHE04i1LWYWcD9ulb6_6NKYsoYvQLzNaAiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18134795</pqid></control><display><type>article</type><title>Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Weng, Fuzhong ; Grody, Norman C. ; Ferraro, Ralph ; Basist, Alan ; Forsyth, David</creator><creatorcontrib>Weng, Fuzhong ; Grody, Norman C. ; Ferraro, Ralph ; Basist, Alan ; Forsyth, David</creatorcontrib><description>A Special Sensor Microwave/Imager (SSM/I) algorithm is developed to measure both cloud liquid water path (LWP) and cloud frequency (CF) over the oceans. For climate analysis, the LWP and CF parameters are computed on pentad and monthly timescales. Comparisons are made between cloud frequencies obtained from microwave and visible/infrared measurements. It is shown that the SSM/I CF correlates with International Satellite Cloud Climatology Program low- and middle-level cloudiness. Interannual variations of monthly LWP are found to be strongly correlated with El Niño and La Niña events. In general, positive LWP anomalies are associated with positive SST anomalies. However, positive LWP anomalies may also occur in regions of negative SST anomalies. This is probably due to an increase in warm top rain clouds, produced from low-level convergence. When pentads of outgoing longwave radiation data are compared to the LWP, they both show the detailed structure for atmospheric intraseasonal oscillations at 30–60-day periods. However, there are some interesting differences. Finally, as an important application, the monthly LWP is compared with simulations from a general circulation model. While the simulation captures the locations of observed maxima and minima, there is a large discrepancy between the model and measurement for the Northern Hemisphere in summer.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1997)010&lt;1086:CLWCFT&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Climatology ; Clouds ; Convection clouds ; Datasets ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Liquids ; Microwaves ; Oceans ; Sea water ; Sensors ; Tropical regions</subject><ispartof>Journal of climate, 1997-05, Vol.10 (5), p.1086-1098</ispartof><rights>1997 American Meteorological Society</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26243211$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26243211$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2674394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weng, Fuzhong</creatorcontrib><creatorcontrib>Grody, Norman C.</creatorcontrib><creatorcontrib>Ferraro, Ralph</creatorcontrib><creatorcontrib>Basist, Alan</creatorcontrib><creatorcontrib>Forsyth, David</creatorcontrib><title>Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager</title><title>Journal of climate</title><description>A Special Sensor Microwave/Imager (SSM/I) algorithm is developed to measure both cloud liquid water path (LWP) and cloud frequency (CF) over the oceans. For climate analysis, the LWP and CF parameters are computed on pentad and monthly timescales. Comparisons are made between cloud frequencies obtained from microwave and visible/infrared measurements. It is shown that the SSM/I CF correlates with International Satellite Cloud Climatology Program low- and middle-level cloudiness. Interannual variations of monthly LWP are found to be strongly correlated with El Niño and La Niña events. In general, positive LWP anomalies are associated with positive SST anomalies. However, positive LWP anomalies may also occur in regions of negative SST anomalies. This is probably due to an increase in warm top rain clouds, produced from low-level convergence. When pentads of outgoing longwave radiation data are compared to the LWP, they both show the detailed structure for atmospheric intraseasonal oscillations at 30–60-day periods. However, there are some interesting differences. Finally, as an important application, the monthly LWP is compared with simulations from a general circulation model. While the simulation captures the locations of observed maxima and minima, there is a large discrepancy between the model and measurement for the Northern Hemisphere in summer.</description><subject>Climatology</subject><subject>Clouds</subject><subject>Convection clouds</subject><subject>Datasets</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Liquids</subject><subject>Microwaves</subject><subject>Oceans</subject><subject>Sea water</subject><subject>Sensors</subject><subject>Tropical regions</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpNkN9LwzAQx4MoOH_8CUIfRPSh212aNqmKIMXNwWQPKj6GNE210i4z6ZT997ZUhk8Hdx--d_chZIIwRuTxBGMKITBGLzFN-RUg3CKI5DpbvGXTlzs6hnG2vKF7ZLQj98kIRMpCweP4kBx5_wmANAEYkVlW200RLKqvTVUEb6o1LsjqqlGtre37NiidbYL2wwTPa6MrVQfPZuWtC54q7eyP-jaTeaPejTshB6WqvTn9q8fkdfrwkj2Gi-Vsnt0vQh0lrA0FmDTXEGlh8qhgOsnjEoAhBR1TVInRsckV4zxHLJXOcyFEjrpQquCG8Tg6JhdD7trZr43xrWwqr01dq5WxGy9RYMR42oOzAezu9N6ZUq5d95bbSgTZi5S9Htnrkb1ICX2_EykHkZJKkNlS0i7p_G-l8lrVpVMrXfldHE04i1LWYWcD9ulb6_6NKYsoYvQLzNaAiA</recordid><startdate>19970501</startdate><enddate>19970501</enddate><creator>Weng, Fuzhong</creator><creator>Grody, Norman C.</creator><creator>Ferraro, Ralph</creator><creator>Basist, Alan</creator><creator>Forsyth, David</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19970501</creationdate><title>Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager</title><author>Weng, Fuzhong ; Grody, Norman C. ; Ferraro, Ralph ; Basist, Alan ; Forsyth, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-80e9bc03c8eb3d4c6b5f004120c521a6ec5eba477b11facbb888b1cdaad7e4753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Climatology</topic><topic>Clouds</topic><topic>Convection clouds</topic><topic>Datasets</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Liquids</topic><topic>Microwaves</topic><topic>Oceans</topic><topic>Sea water</topic><topic>Sensors</topic><topic>Tropical regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Fuzhong</creatorcontrib><creatorcontrib>Grody, Norman C.</creatorcontrib><creatorcontrib>Ferraro, Ralph</creatorcontrib><creatorcontrib>Basist, Alan</creatorcontrib><creatorcontrib>Forsyth, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Fuzhong</au><au>Grody, Norman C.</au><au>Ferraro, Ralph</au><au>Basist, Alan</au><au>Forsyth, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager</atitle><jtitle>Journal of climate</jtitle><date>1997-05-01</date><risdate>1997</risdate><volume>10</volume><issue>5</issue><spage>1086</spage><epage>1098</epage><pages>1086-1098</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A Special Sensor Microwave/Imager (SSM/I) algorithm is developed to measure both cloud liquid water path (LWP) and cloud frequency (CF) over the oceans. For climate analysis, the LWP and CF parameters are computed on pentad and monthly timescales. Comparisons are made between cloud frequencies obtained from microwave and visible/infrared measurements. It is shown that the SSM/I CF correlates with International Satellite Cloud Climatology Program low- and middle-level cloudiness. Interannual variations of monthly LWP are found to be strongly correlated with El Niño and La Niña events. In general, positive LWP anomalies are associated with positive SST anomalies. However, positive LWP anomalies may also occur in regions of negative SST anomalies. This is probably due to an increase in warm top rain clouds, produced from low-level convergence. When pentads of outgoing longwave radiation data are compared to the LWP, they both show the detailed structure for atmospheric intraseasonal oscillations at 30–60-day periods. However, there are some interesting differences. Finally, as an important application, the monthly LWP is compared with simulations from a general circulation model. While the simulation captures the locations of observed maxima and minima, there is a large discrepancy between the model and measurement for the Northern Hemisphere in summer.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1997)010&lt;1086:CLWCFT&gt;2.0.CO;2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 1997-05, Vol.10 (5), p.1086-1098
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_18134795
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Climatology
Clouds
Convection clouds
Datasets
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Liquids
Microwaves
Oceans
Sea water
Sensors
Tropical regions
title Cloud Liquid Water Climatology from the Special Sensor Microwave/Imager
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20Liquid%20Water%20Climatology%20from%20the%20Special%20Sensor%20Microwave/Imager&rft.jtitle=Journal%20of%20climate&rft.au=Weng,%20Fuzhong&rft.date=1997-05-01&rft.volume=10&rft.issue=5&rft.spage=1086&rft.epage=1098&rft.pages=1086-1098&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1997)010%3C1086:CLWCFT%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26243211%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18134795&rft_id=info:pmid/&rft_jstor_id=26243211&rfr_iscdi=true