Coordination contributions to protein stability in metal-substituted carbonic anhydrase

Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological inorganic chemistry 2016-09, Vol.21 (5-6), p.659-667
Hauptverfasser: Lisi, George P., Hughes, Russell P., Wilcox, Dean E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 5-6
container_start_page 659
container_title Journal of biological inorganic chemistry
container_volume 21
creator Lisi, George P.
Hughes, Russell P.
Wilcox, Dean E.
description Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn 2+ . This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His 3 coordination that is imposed at the protein site.
doi_str_mv 10.1007/s00775-016-1375-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812890841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812890841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotlZ_gBsZcONmNM8ms5TiCwpuFJchk2Q0ZZrUJLPovzdlqojgJrmHfPfcmwPAOYLXCEJ-k8rBWQ3RvEakFPMDMEWU4KIwPwRT2NCmFpjxCThJaQUhJAyxYzDBnDCIGJuCt0UI0Tivsgu-0sHn6NphJ1KVQ7WJIVvnq5RV63qXt1URa5tVX6ehTdnlIVtTaRXb4J2ulP_YmqiSPQVHneqTPdvfM_B6f_eyeKyXzw9Pi9tlrSkRuTakoxwJ02pOIBMNbEqNTaM7zqlmuPyGQqw0tFAYS5jhrcWGKIIZEZRoMgNXo2_Z9HOwKcu1S9r2vfI2DEkigXCxFRQV9PIPugpD9GW7QgnIKaaEFAqNlI4hpWg7uYlureJWIih3qcsxdVlSl7vU5bz0XOydh3ZtzU_Hd8wFwCOQypN_t_HX6H9dvwDiy41H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880742433</pqid></control><display><type>article</type><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</creator><creatorcontrib>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</creatorcontrib><description>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn 2+ . This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His 3 coordination that is imposed at the protein site.</description><identifier>ISSN: 0949-8257</identifier><identifier>EISSN: 1432-1327</identifier><identifier>DOI: 10.1007/s00775-016-1375-6</identifier><identifier>PMID: 27350155</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Carbon dioxide ; Carbonic Anhydrase II - chemistry ; Carbonic Anhydrase II - metabolism ; Carbonic anhydrases ; Cattle ; Copper ; Crystal structure ; Differential scanning calorimetry ; E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry ; Enthalpy ; Erythrocytes - enzymology ; Humans ; Hydration ; Imidazole ; Inorganic chemistry ; Ions ; Life Sciences ; Metals, Heavy - chemistry ; Metals, Heavy - metabolism ; Microbiology ; Original Paper ; Protein Stability ; Protein Unfolding ; Proteins ; Quantum Theory ; Temperature ; Thermal stability ; Zinc</subject><ispartof>Journal of biological inorganic chemistry, 2016-09, Vol.21 (5-6), p.659-667</ispartof><rights>SBIC 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</citedby><cites>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00775-016-1375-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00775-016-1375-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27350155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisi, George P.</creatorcontrib><creatorcontrib>Hughes, Russell P.</creatorcontrib><creatorcontrib>Wilcox, Dean E.</creatorcontrib><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><title>Journal of biological inorganic chemistry</title><addtitle>J Biol Inorg Chem</addtitle><addtitle>J Biol Inorg Chem</addtitle><description>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn 2+ . This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His 3 coordination that is imposed at the protein site.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbonic Anhydrase II - chemistry</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Carbonic anhydrases</subject><subject>Cattle</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Differential scanning calorimetry</subject><subject>E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry</subject><subject>Enthalpy</subject><subject>Erythrocytes - enzymology</subject><subject>Humans</subject><subject>Hydration</subject><subject>Imidazole</subject><subject>Inorganic chemistry</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Metals, Heavy - chemistry</subject><subject>Metals, Heavy - metabolism</subject><subject>Microbiology</subject><subject>Original Paper</subject><subject>Protein Stability</subject><subject>Protein Unfolding</subject><subject>Proteins</subject><subject>Quantum Theory</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Zinc</subject><issn>0949-8257</issn><issn>1432-1327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEUhYMotlZ_gBsZcONmNM8ms5TiCwpuFJchk2Q0ZZrUJLPovzdlqojgJrmHfPfcmwPAOYLXCEJ-k8rBWQ3RvEakFPMDMEWU4KIwPwRT2NCmFpjxCThJaQUhJAyxYzDBnDCIGJuCt0UI0Tivsgu-0sHn6NphJ1KVQ7WJIVvnq5RV63qXt1URa5tVX6ehTdnlIVtTaRXb4J2ulP_YmqiSPQVHneqTPdvfM_B6f_eyeKyXzw9Pi9tlrSkRuTakoxwJ02pOIBMNbEqNTaM7zqlmuPyGQqw0tFAYS5jhrcWGKIIZEZRoMgNXo2_Z9HOwKcu1S9r2vfI2DEkigXCxFRQV9PIPugpD9GW7QgnIKaaEFAqNlI4hpWg7uYlureJWIih3qcsxdVlSl7vU5bz0XOydh3ZtzU_Hd8wFwCOQypN_t_HX6H9dvwDiy41H</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Lisi, George P.</creator><creator>Hughes, Russell P.</creator><creator>Wilcox, Dean E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160901</creationdate><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><author>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbonic Anhydrase II - chemistry</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Carbonic anhydrases</topic><topic>Cattle</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Differential scanning calorimetry</topic><topic>E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry</topic><topic>Enthalpy</topic><topic>Erythrocytes - enzymology</topic><topic>Humans</topic><topic>Hydration</topic><topic>Imidazole</topic><topic>Inorganic chemistry</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Metals, Heavy - chemistry</topic><topic>Metals, Heavy - metabolism</topic><topic>Microbiology</topic><topic>Original Paper</topic><topic>Protein Stability</topic><topic>Protein Unfolding</topic><topic>Proteins</topic><topic>Quantum Theory</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisi, George P.</creatorcontrib><creatorcontrib>Hughes, Russell P.</creatorcontrib><creatorcontrib>Wilcox, Dean E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biological inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, George P.</au><au>Hughes, Russell P.</au><au>Wilcox, Dean E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</atitle><jtitle>Journal of biological inorganic chemistry</jtitle><stitle>J Biol Inorg Chem</stitle><addtitle>J Biol Inorg Chem</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>21</volume><issue>5-6</issue><spage>659</spage><epage>667</epage><pages>659-667</pages><issn>0949-8257</issn><eissn>1432-1327</eissn><abstract>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn 2+ . This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His 3 coordination that is imposed at the protein site.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27350155</pmid><doi>10.1007/s00775-016-1375-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-8257
ispartof Journal of biological inorganic chemistry, 2016-09, Vol.21 (5-6), p.659-667
issn 0949-8257
1432-1327
language eng
recordid cdi_proquest_miscellaneous_1812890841
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biochemistry
Biomedical and Life Sciences
Carbon dioxide
Carbonic Anhydrase II - chemistry
Carbonic Anhydrase II - metabolism
Carbonic anhydrases
Cattle
Copper
Crystal structure
Differential scanning calorimetry
E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry
Enthalpy
Erythrocytes - enzymology
Humans
Hydration
Imidazole
Inorganic chemistry
Ions
Life Sciences
Metals, Heavy - chemistry
Metals, Heavy - metabolism
Microbiology
Original Paper
Protein Stability
Protein Unfolding
Proteins
Quantum Theory
Temperature
Thermal stability
Zinc
title Coordination contributions to protein stability in metal-substituted carbonic anhydrase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20contributions%20to%20protein%20stability%20in%20metal-substituted%20carbonic%20anhydrase&rft.jtitle=Journal%20of%20biological%20inorganic%20chemistry&rft.au=Lisi,%20George%20P.&rft.date=2016-09-01&rft.volume=21&rft.issue=5-6&rft.spage=659&rft.epage=667&rft.pages=659-667&rft.issn=0949-8257&rft.eissn=1432-1327&rft_id=info:doi/10.1007/s00775-016-1375-6&rft_dat=%3Cproquest_cross%3E1812890841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880742433&rft_id=info:pmid/27350155&rfr_iscdi=true