Coordination contributions to protein stability in metal-substituted carbonic anhydrase
Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co 2+ , Cd 2+ , Cu 2+ , Ni 2+ and Mn 2+ . The metal ions stabilize the protein to different extent,...
Gespeichert in:
Veröffentlicht in: | Journal of biological inorganic chemistry 2016-09, Vol.21 (5-6), p.659-667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 5-6 |
container_start_page | 659 |
container_title | Journal of biological inorganic chemistry |
container_volume | 21 |
creator | Lisi, George P. Hughes, Russell P. Wilcox, Dean E. |
description | Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co
2+
, Cd
2+
, Cu
2+
, Ni
2+
and Mn
2+
. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn
2+
. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His
3
coordination that is imposed at the protein site. |
doi_str_mv | 10.1007/s00775-016-1375-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812890841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812890841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMotlZ_gBsZcONmNM8ms5TiCwpuFJchk2Q0ZZrUJLPovzdlqojgJrmHfPfcmwPAOYLXCEJ-k8rBWQ3RvEakFPMDMEWU4KIwPwRT2NCmFpjxCThJaQUhJAyxYzDBnDCIGJuCt0UI0Tivsgu-0sHn6NphJ1KVQ7WJIVvnq5RV63qXt1URa5tVX6ehTdnlIVtTaRXb4J2ulP_YmqiSPQVHneqTPdvfM_B6f_eyeKyXzw9Pi9tlrSkRuTakoxwJ02pOIBMNbEqNTaM7zqlmuPyGQqw0tFAYS5jhrcWGKIIZEZRoMgNXo2_Z9HOwKcu1S9r2vfI2DEkigXCxFRQV9PIPugpD9GW7QgnIKaaEFAqNlI4hpWg7uYlureJWIih3qcsxdVlSl7vU5bz0XOydh3ZtzU_Hd8wFwCOQypN_t_HX6H9dvwDiy41H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880742433</pqid></control><display><type>article</type><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</creator><creatorcontrib>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</creatorcontrib><description>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co
2+
, Cd
2+
, Cu
2+
, Ni
2+
and Mn
2+
. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn
2+
. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His
3
coordination that is imposed at the protein site.</description><identifier>ISSN: 0949-8257</identifier><identifier>EISSN: 1432-1327</identifier><identifier>DOI: 10.1007/s00775-016-1375-6</identifier><identifier>PMID: 27350155</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Carbon dioxide ; Carbonic Anhydrase II - chemistry ; Carbonic Anhydrase II - metabolism ; Carbonic anhydrases ; Cattle ; Copper ; Crystal structure ; Differential scanning calorimetry ; E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry ; Enthalpy ; Erythrocytes - enzymology ; Humans ; Hydration ; Imidazole ; Inorganic chemistry ; Ions ; Life Sciences ; Metals, Heavy - chemistry ; Metals, Heavy - metabolism ; Microbiology ; Original Paper ; Protein Stability ; Protein Unfolding ; Proteins ; Quantum Theory ; Temperature ; Thermal stability ; Zinc</subject><ispartof>Journal of biological inorganic chemistry, 2016-09, Vol.21 (5-6), p.659-667</ispartof><rights>SBIC 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</citedby><cites>FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00775-016-1375-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00775-016-1375-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27350155$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lisi, George P.</creatorcontrib><creatorcontrib>Hughes, Russell P.</creatorcontrib><creatorcontrib>Wilcox, Dean E.</creatorcontrib><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><title>Journal of biological inorganic chemistry</title><addtitle>J Biol Inorg Chem</addtitle><addtitle>J Biol Inorg Chem</addtitle><description>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co
2+
, Cd
2+
, Cu
2+
, Ni
2+
and Mn
2+
. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn
2+
. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His
3
coordination that is imposed at the protein site.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbonic Anhydrase II - chemistry</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Carbonic anhydrases</subject><subject>Cattle</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Differential scanning calorimetry</subject><subject>E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry</subject><subject>Enthalpy</subject><subject>Erythrocytes - enzymology</subject><subject>Humans</subject><subject>Hydration</subject><subject>Imidazole</subject><subject>Inorganic chemistry</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Metals, Heavy - chemistry</subject><subject>Metals, Heavy - metabolism</subject><subject>Microbiology</subject><subject>Original Paper</subject><subject>Protein Stability</subject><subject>Protein Unfolding</subject><subject>Proteins</subject><subject>Quantum Theory</subject><subject>Temperature</subject><subject>Thermal stability</subject><subject>Zinc</subject><issn>0949-8257</issn><issn>1432-1327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEUhYMotlZ_gBsZcONmNM8ms5TiCwpuFJchk2Q0ZZrUJLPovzdlqojgJrmHfPfcmwPAOYLXCEJ-k8rBWQ3RvEakFPMDMEWU4KIwPwRT2NCmFpjxCThJaQUhJAyxYzDBnDCIGJuCt0UI0Tivsgu-0sHn6NphJ1KVQ7WJIVvnq5RV63qXt1URa5tVX6ehTdnlIVtTaRXb4J2ulP_YmqiSPQVHneqTPdvfM_B6f_eyeKyXzw9Pi9tlrSkRuTakoxwJ02pOIBMNbEqNTaM7zqlmuPyGQqw0tFAYS5jhrcWGKIIZEZRoMgNXo2_Z9HOwKcu1S9r2vfI2DEkigXCxFRQV9PIPugpD9GW7QgnIKaaEFAqNlI4hpWg7uYlureJWIih3qcsxdVlSl7vU5bz0XOydh3ZtzU_Hd8wFwCOQypN_t_HX6H9dvwDiy41H</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Lisi, George P.</creator><creator>Hughes, Russell P.</creator><creator>Wilcox, Dean E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160901</creationdate><title>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</title><author>Lisi, George P. ; Hughes, Russell P. ; Wilcox, Dean E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-d3f4718dbc730589098db2d9cf774c52143402ac0e08de35d7be2d3a3253843c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbonic Anhydrase II - chemistry</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Carbonic anhydrases</topic><topic>Cattle</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Differential scanning calorimetry</topic><topic>E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry</topic><topic>Enthalpy</topic><topic>Erythrocytes - enzymology</topic><topic>Humans</topic><topic>Hydration</topic><topic>Imidazole</topic><topic>Inorganic chemistry</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Metals, Heavy - chemistry</topic><topic>Metals, Heavy - metabolism</topic><topic>Microbiology</topic><topic>Original Paper</topic><topic>Protein Stability</topic><topic>Protein Unfolding</topic><topic>Proteins</topic><topic>Quantum Theory</topic><topic>Temperature</topic><topic>Thermal stability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lisi, George P.</creatorcontrib><creatorcontrib>Hughes, Russell P.</creatorcontrib><creatorcontrib>Wilcox, Dean E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biological inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lisi, George P.</au><au>Hughes, Russell P.</au><au>Wilcox, Dean E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordination contributions to protein stability in metal-substituted carbonic anhydrase</atitle><jtitle>Journal of biological inorganic chemistry</jtitle><stitle>J Biol Inorg Chem</stitle><addtitle>J Biol Inorg Chem</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>21</volume><issue>5-6</issue><spage>659</spage><epage>667</epage><pages>659-667</pages><issn>0949-8257</issn><eissn>1432-1327</eissn><abstract>Contributions of the active site metal to the stability of carbonic anhydrase (CA) were quantified by differential scanning calorimetry and complementary unfolding measurements of CA substituted with Co
2+
, Cd
2+
, Cu
2+
, Ni
2+
and Mn
2+
. The metal ions stabilize the protein to different extent, with the highest stability provided by the native Zn
2+
. This additional stability does not correlate with the enthalpy of the three metal-imidazole (His) bonds at the active site or other properties of the metal ions (charge density, hydration enthalpy). However, DFT calculations reveal an energetic penalty associated with metal coordination at the active site, and the magnitude of this penalty correlates inversely with metal contributions to the stability of the protein. While the affinity of CA for metal ions generally reflects the Irving–Williams series, the additional thermal stability provided by metal ions is modulated by the rigid His
3
coordination that is imposed at the protein site.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27350155</pmid><doi>10.1007/s00775-016-1375-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-8257 |
ispartof | Journal of biological inorganic chemistry, 2016-09, Vol.21 (5-6), p.659-667 |
issn | 0949-8257 1432-1327 |
language | eng |
recordid | cdi_proquest_miscellaneous_1812890841 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Animals Biochemistry Biomedical and Life Sciences Carbon dioxide Carbonic Anhydrase II - chemistry Carbonic Anhydrase II - metabolism Carbonic anhydrases Cattle Copper Crystal structure Differential scanning calorimetry E.I. Solomon: Papers in Celebration of His 2016 ACS Alfred Bader Award in Bioorganic or Bioinorganic Chemistry Enthalpy Erythrocytes - enzymology Humans Hydration Imidazole Inorganic chemistry Ions Life Sciences Metals, Heavy - chemistry Metals, Heavy - metabolism Microbiology Original Paper Protein Stability Protein Unfolding Proteins Quantum Theory Temperature Thermal stability Zinc |
title | Coordination contributions to protein stability in metal-substituted carbonic anhydrase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordination%20contributions%20to%20protein%20stability%20in%20metal-substituted%20carbonic%20anhydrase&rft.jtitle=Journal%20of%20biological%20inorganic%20chemistry&rft.au=Lisi,%20George%20P.&rft.date=2016-09-01&rft.volume=21&rft.issue=5-6&rft.spage=659&rft.epage=667&rft.pages=659-667&rft.issn=0949-8257&rft.eissn=1432-1327&rft_id=info:doi/10.1007/s00775-016-1375-6&rft_dat=%3Cproquest_cross%3E1812890841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880742433&rft_id=info:pmid/27350155&rfr_iscdi=true |