Unique yeast histone sequences influence octamer and nucleosome stability

Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEBS letters 2016-08, Vol.590 (16), p.2629-2638
Hauptverfasser: Leung, Andrew, Cheema, Manjinder, González‐Romero, Rodrigo, Eirin‐Lopez, Jose M., Ausió, Juan, Nelson, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2638
container_issue 16
container_start_page 2629
container_title FEBS letters
container_volume 590
creator Leung, Andrew
Cheema, Manjinder
González‐Romero, Rodrigo
Eirin‐Lopez, Jose M.
Ausió, Juan
Nelson, Christopher J.
description Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.
doi_str_mv 10.1002/1873-3468.12266
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812889819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812889819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqUws6GMLGl9jpPYI6AWKlViobNlOxdhlI8Sp0L597hN6cpi-06PX909hNwDnQOlbAEiT-KEZ2IOjGXZBZmeO5dkSinwOM1lMiE33n_RUAuQ12TC8iSRVKRTst427nuP0YDa99Gn833bYOQx9BqLPnJNWR2fUWt7XWMX6aaImr2tsPVtHdBeG1e5frglV6WuPN6d7hnZrpYfL2_x5v11_fK0iS1P0yy2gubaQlFSWiZMcmO4yQxLQXJhOXAaTkQJxpgC0qygUqJINZbApAYwyYw8jrm7rg1T-l7VzlusKt1gu_cqrMiEkGHRgC5G1Hat9x2Wate5WneDAqoO_tTBljrYUkd_4cfDKXxvaizO_J-wAGQj8OMqHP7LU6vlMxuTfwF8gnqu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812889819</pqid></control><display><type>article</type><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</creator><creatorcontrib>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</creatorcontrib><description>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1002/1873-3468.12266</identifier><identifier>PMID: 27339085</identifier><language>eng</language><publisher>England</publisher><subject>Amino Acids - chemistry ; Amino Acids - genetics ; chromatin ; Chromatin - chemistry ; Chromatin - genetics ; Evolution, Molecular ; Genome, Fungal ; Histones - chemistry ; Histones - genetics ; Humans ; nucleosome ; Nucleosomes - chemistry ; Nucleosomes - genetics ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Saccharomyces cerevisiae - genetics ; yeast</subject><ispartof>FEBS letters, 2016-08, Vol.590 (16), p.2629-2638</ispartof><rights>2016 Federation of European Biochemical Societies</rights><rights>2016 Federation of European Biochemical Societies.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</citedby><cites>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1873-3468.12266$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1873-3468.12266$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27339085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Cheema, Manjinder</creatorcontrib><creatorcontrib>González‐Romero, Rodrigo</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Nelson, Christopher J.</creatorcontrib><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</description><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Evolution, Molecular</subject><subject>Genome, Fungal</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>nucleosome</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - genetics</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>yeast</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqUws6GMLGl9jpPYI6AWKlViobNlOxdhlI8Sp0L597hN6cpi-06PX909hNwDnQOlbAEiT-KEZ2IOjGXZBZmeO5dkSinwOM1lMiE33n_RUAuQ12TC8iSRVKRTst427nuP0YDa99Gn833bYOQx9BqLPnJNWR2fUWt7XWMX6aaImr2tsPVtHdBeG1e5frglV6WuPN6d7hnZrpYfL2_x5v11_fK0iS1P0yy2gubaQlFSWiZMcmO4yQxLQXJhOXAaTkQJxpgC0qygUqJINZbApAYwyYw8jrm7rg1T-l7VzlusKt1gu_cqrMiEkGHRgC5G1Hat9x2Wate5WneDAqoO_tTBljrYUkd_4cfDKXxvaizO_J-wAGQj8OMqHP7LU6vlMxuTfwF8gnqu</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Leung, Andrew</creator><creator>Cheema, Manjinder</creator><creator>González‐Romero, Rodrigo</creator><creator>Eirin‐Lopez, Jose M.</creator><creator>Ausió, Juan</creator><creator>Nelson, Christopher J.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><author>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Evolution, Molecular</topic><topic>Genome, Fungal</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>nucleosome</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - genetics</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Cheema, Manjinder</creatorcontrib><creatorcontrib>González‐Romero, Rodrigo</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Nelson, Christopher J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Andrew</au><au>Cheema, Manjinder</au><au>González‐Romero, Rodrigo</au><au>Eirin‐Lopez, Jose M.</au><au>Ausió, Juan</au><au>Nelson, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique yeast histone sequences influence octamer and nucleosome stability</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2016-08</date><risdate>2016</risdate><volume>590</volume><issue>16</issue><spage>2629</spage><epage>2638</epage><pages>2629-2638</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</abstract><cop>England</cop><pmid>27339085</pmid><doi>10.1002/1873-3468.12266</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-5793
ispartof FEBS letters, 2016-08, Vol.590 (16), p.2629-2638
issn 0014-5793
1873-3468
language eng
recordid cdi_proquest_miscellaneous_1812889819
source MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Amino Acids - chemistry
Amino Acids - genetics
chromatin
Chromatin - chemistry
Chromatin - genetics
Evolution, Molecular
Genome, Fungal
Histones - chemistry
Histones - genetics
Humans
nucleosome
Nucleosomes - chemistry
Nucleosomes - genetics
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Saccharomyces cerevisiae - genetics
yeast
title Unique yeast histone sequences influence octamer and nucleosome stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20yeast%20histone%20sequences%20influence%20octamer%20and%20nucleosome%20stability&rft.jtitle=FEBS%20letters&rft.au=Leung,%20Andrew&rft.date=2016-08&rft.volume=590&rft.issue=16&rft.spage=2629&rft.epage=2638&rft.pages=2629-2638&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1002/1873-3468.12266&rft_dat=%3Cproquest_cross%3E1812889819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812889819&rft_id=info:pmid/27339085&rfr_iscdi=true