Unique yeast histone sequences influence octamer and nucleosome stability
Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone protei...
Gespeichert in:
Veröffentlicht in: | FEBS letters 2016-08, Vol.590 (16), p.2629-2638 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2638 |
---|---|
container_issue | 16 |
container_start_page | 2629 |
container_title | FEBS letters |
container_volume | 590 |
creator | Leung, Andrew Cheema, Manjinder González‐Romero, Rodrigo Eirin‐Lopez, Jose M. Ausió, Juan Nelson, Christopher J. |
description | Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies. |
doi_str_mv | 10.1002/1873-3468.12266 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812889819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1812889819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqUws6GMLGl9jpPYI6AWKlViobNlOxdhlI8Sp0L597hN6cpi-06PX909hNwDnQOlbAEiT-KEZ2IOjGXZBZmeO5dkSinwOM1lMiE33n_RUAuQ12TC8iSRVKRTst427nuP0YDa99Gn833bYOQx9BqLPnJNWR2fUWt7XWMX6aaImr2tsPVtHdBeG1e5frglV6WuPN6d7hnZrpYfL2_x5v11_fK0iS1P0yy2gubaQlFSWiZMcmO4yQxLQXJhOXAaTkQJxpgC0qygUqJINZbApAYwyYw8jrm7rg1T-l7VzlusKt1gu_cqrMiEkGHRgC5G1Hat9x2Wate5WneDAqoO_tTBljrYUkd_4cfDKXxvaizO_J-wAGQj8OMqHP7LU6vlMxuTfwF8gnqu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812889819</pqid></control><display><type>article</type><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><source>MEDLINE</source><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</creator><creatorcontrib>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</creatorcontrib><description>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</description><identifier>ISSN: 0014-5793</identifier><identifier>EISSN: 1873-3468</identifier><identifier>DOI: 10.1002/1873-3468.12266</identifier><identifier>PMID: 27339085</identifier><language>eng</language><publisher>England</publisher><subject>Amino Acids - chemistry ; Amino Acids - genetics ; chromatin ; Chromatin - chemistry ; Chromatin - genetics ; Evolution, Molecular ; Genome, Fungal ; Histones - chemistry ; Histones - genetics ; Humans ; nucleosome ; Nucleosomes - chemistry ; Nucleosomes - genetics ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Saccharomyces cerevisiae - genetics ; yeast</subject><ispartof>FEBS letters, 2016-08, Vol.590 (16), p.2629-2638</ispartof><rights>2016 Federation of European Biochemical Societies</rights><rights>2016 Federation of European Biochemical Societies.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</citedby><cites>FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1873-3468.12266$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1873-3468.12266$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27339085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Cheema, Manjinder</creatorcontrib><creatorcontrib>González‐Romero, Rodrigo</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Nelson, Christopher J.</creatorcontrib><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><title>FEBS letters</title><addtitle>FEBS Lett</addtitle><description>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</description><subject>Amino Acids - chemistry</subject><subject>Amino Acids - genetics</subject><subject>chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - genetics</subject><subject>Evolution, Molecular</subject><subject>Genome, Fungal</subject><subject>Histones - chemistry</subject><subject>Histones - genetics</subject><subject>Humans</subject><subject>nucleosome</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - genetics</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>yeast</subject><issn>0014-5793</issn><issn>1873-3468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EoqUws6GMLGl9jpPYI6AWKlViobNlOxdhlI8Sp0L597hN6cpi-06PX909hNwDnQOlbAEiT-KEZ2IOjGXZBZmeO5dkSinwOM1lMiE33n_RUAuQ12TC8iSRVKRTst427nuP0YDa99Gn833bYOQx9BqLPnJNWR2fUWt7XWMX6aaImr2tsPVtHdBeG1e5frglV6WuPN6d7hnZrpYfL2_x5v11_fK0iS1P0yy2gubaQlFSWiZMcmO4yQxLQXJhOXAaTkQJxpgC0qygUqJINZbApAYwyYw8jrm7rg1T-l7VzlusKt1gu_cqrMiEkGHRgC5G1Hat9x2Wate5WneDAqoO_tTBljrYUkd_4cfDKXxvaizO_J-wAGQj8OMqHP7LU6vlMxuTfwF8gnqu</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Leung, Andrew</creator><creator>Cheema, Manjinder</creator><creator>González‐Romero, Rodrigo</creator><creator>Eirin‐Lopez, Jose M.</creator><creator>Ausió, Juan</creator><creator>Nelson, Christopher J.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201608</creationdate><title>Unique yeast histone sequences influence octamer and nucleosome stability</title><author>Leung, Andrew ; Cheema, Manjinder ; González‐Romero, Rodrigo ; Eirin‐Lopez, Jose M. ; Ausió, Juan ; Nelson, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4556-c807ac1df00f3294bb4b6b251948c41408c4ee91bbbd156d099e85aef129a11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acids - chemistry</topic><topic>Amino Acids - genetics</topic><topic>chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - genetics</topic><topic>Evolution, Molecular</topic><topic>Genome, Fungal</topic><topic>Histones - chemistry</topic><topic>Histones - genetics</topic><topic>Humans</topic><topic>nucleosome</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - genetics</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Cheema, Manjinder</creatorcontrib><creatorcontrib>González‐Romero, Rodrigo</creatorcontrib><creatorcontrib>Eirin‐Lopez, Jose M.</creatorcontrib><creatorcontrib>Ausió, Juan</creatorcontrib><creatorcontrib>Nelson, Christopher J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>FEBS letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, Andrew</au><au>Cheema, Manjinder</au><au>González‐Romero, Rodrigo</au><au>Eirin‐Lopez, Jose M.</au><au>Ausió, Juan</au><au>Nelson, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unique yeast histone sequences influence octamer and nucleosome stability</atitle><jtitle>FEBS letters</jtitle><addtitle>FEBS Lett</addtitle><date>2016-08</date><risdate>2016</risdate><volume>590</volume><issue>16</issue><spage>2629</spage><epage>2638</epage><pages>2629-2638</pages><issn>0014-5793</issn><eissn>1873-3468</eissn><abstract>Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120K121K125) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast‐to‐human changes at these positions render yeast histones amenable to well‐established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.</abstract><cop>England</cop><pmid>27339085</pmid><doi>10.1002/1873-3468.12266</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-5793 |
ispartof | FEBS letters, 2016-08, Vol.590 (16), p.2629-2638 |
issn | 0014-5793 1873-3468 |
language | eng |
recordid | cdi_proquest_miscellaneous_1812889819 |
source | MEDLINE; Wiley Online Library Free Content; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amino Acids - chemistry Amino Acids - genetics chromatin Chromatin - chemistry Chromatin - genetics Evolution, Molecular Genome, Fungal Histones - chemistry Histones - genetics Humans nucleosome Nucleosomes - chemistry Nucleosomes - genetics Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Saccharomyces cerevisiae - genetics yeast |
title | Unique yeast histone sequences influence octamer and nucleosome stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unique%20yeast%20histone%20sequences%20influence%20octamer%20and%20nucleosome%20stability&rft.jtitle=FEBS%20letters&rft.au=Leung,%20Andrew&rft.date=2016-08&rft.volume=590&rft.issue=16&rft.spage=2629&rft.epage=2638&rft.pages=2629-2638&rft.issn=0014-5793&rft.eissn=1873-3468&rft_id=info:doi/10.1002/1873-3468.12266&rft_dat=%3Cproquest_cross%3E1812889819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812889819&rft_id=info:pmid/27339085&rfr_iscdi=true |