Machine learning approaches in medical image analysis: From detection to diagnosis
Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, lear...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2016-10, Vol.33, p.94-97 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 97 |
---|---|
container_issue | |
container_start_page | 94 |
container_title | Medical image analysis |
container_volume | 33 |
creator | de Bruijne, Marleen |
description | Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results. |
doi_str_mv | 10.1016/j.media.2016.06.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812886717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841516301098</els_id><sourcerecordid>1812886717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-56beb3ff4fe39daec36e9790a2f79c43b577c53f99b0481cc4687fbfabcada883</originalsourceid><addsrcrecordid>eNp9UN9LwzAQDqK4Of0LBMmjL6350Tat4IMMp8JEEH0OaXqZGW06k07Yf2_m5h6Fg7vkvrvvuw-hS0pSSmhxs0w7aKxKWXykJAZnR2hMeUGTMmP8-FDTfITOQlgSQkSWkVM0YiIrKWfZGL29KP1pHeAWlHfWLbBarXwfPyFg6_CWQqsW204tACun2k2w4RbPfN_hBgbQg-0dHnocpSxcH5vn6MSoNsDFPk_Qx-zhffqUzF8fn6f380TnjAxJXtRQc2MyA7xqFGheQCUqopgRlc54nQuhc26qqiZRrdZZUQpTG1Vr1aiy5BN0vdsb9X6tIQyys0FD2yoH_TpIWlJWloWgIkL5Dqp9H4IHI1c-XuQ3khK5NVMu5a-ZcmumJDE4i1NXe4J1HbuHmT_3IuBuB4B45rcFL4O24HTc5KMxsuntvwQ_WaKHlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812886717</pqid></control><display><type>article</type><title>Machine learning approaches in medical image analysis: From detection to diagnosis</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>de Bruijne, Marleen</creator><creatorcontrib>de Bruijne, Marleen</creatorcontrib><description>Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2016.06.032</identifier><identifier>PMID: 27481324</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Computer aided diagnosis ; Diagnosis, Computer-Assisted ; Diagnostic Imaging ; Humans ; Machine Learning ; Transfer learning</subject><ispartof>Medical image analysis, 2016-10, Vol.33, p.94-97</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-56beb3ff4fe39daec36e9790a2f79c43b577c53f99b0481cc4687fbfabcada883</citedby><cites>FETCH-LOGICAL-c520t-56beb3ff4fe39daec36e9790a2f79c43b577c53f99b0481cc4687fbfabcada883</cites><orcidid>0000-0002-6328-902X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841516301098$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27481324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Bruijne, Marleen</creatorcontrib><title>Machine learning approaches in medical image analysis: From detection to diagnosis</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer aided diagnosis</subject><subject>Diagnosis, Computer-Assisted</subject><subject>Diagnostic Imaging</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Transfer learning</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UN9LwzAQDqK4Of0LBMmjL6350Tat4IMMp8JEEH0OaXqZGW06k07Yf2_m5h6Fg7vkvrvvuw-hS0pSSmhxs0w7aKxKWXykJAZnR2hMeUGTMmP8-FDTfITOQlgSQkSWkVM0YiIrKWfZGL29KP1pHeAWlHfWLbBarXwfPyFg6_CWQqsW204tACun2k2w4RbPfN_hBgbQg-0dHnocpSxcH5vn6MSoNsDFPk_Qx-zhffqUzF8fn6f380TnjAxJXtRQc2MyA7xqFGheQCUqopgRlc54nQuhc26qqiZRrdZZUQpTG1Vr1aiy5BN0vdsb9X6tIQyys0FD2yoH_TpIWlJWloWgIkL5Dqp9H4IHI1c-XuQ3khK5NVMu5a-ZcmumJDE4i1NXe4J1HbuHmT_3IuBuB4B45rcFL4O24HTc5KMxsuntvwQ_WaKHlw</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>de Bruijne, Marleen</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid></search><sort><creationdate>201610</creationdate><title>Machine learning approaches in medical image analysis: From detection to diagnosis</title><author>de Bruijne, Marleen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-56beb3ff4fe39daec36e9790a2f79c43b577c53f99b0481cc4687fbfabcada883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer aided diagnosis</topic><topic>Diagnosis, Computer-Assisted</topic><topic>Diagnostic Imaging</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Bruijne, Marleen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Bruijne, Marleen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning approaches in medical image analysis: From detection to diagnosis</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2016-10</date><risdate>2016</risdate><volume>33</volume><spage>94</spage><epage>97</epage><pages>94-97</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Machine learning approaches are increasingly successful in image-based diagnosis, disease prognosis, and risk assessment. This paper highlights new research directions and discusses three main challenges related to machine learning in medical imaging: coping with variation in imaging protocols, learning from weak labels, and interpretation and evaluation of results.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>27481324</pmid><doi>10.1016/j.media.2016.06.032</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2016-10, Vol.33, p.94-97 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_1812886717 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Classification Computer aided diagnosis Diagnosis, Computer-Assisted Diagnostic Imaging Humans Machine Learning Transfer learning |
title | Machine learning approaches in medical image analysis: From detection to diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20approaches%20in%20medical%20image%20analysis:%20From%20detection%20to%20diagnosis&rft.jtitle=Medical%20image%20analysis&rft.au=de%20Bruijne,%20Marleen&rft.date=2016-10&rft.volume=33&rft.spage=94&rft.epage=97&rft.pages=94-97&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2016.06.032&rft_dat=%3Cproquest_cross%3E1812886717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812886717&rft_id=info:pmid/27481324&rft_els_id=S1361841516301098&rfr_iscdi=true |