Constrained Multiobjective Optimization Algorithm Based on Immune System Model
An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The f...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2016-09, Vol.46 (9), p.2056-2069 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2069 |
---|---|
container_issue | 9 |
container_start_page | 2056 |
container_title | IEEE transactions on cybernetics |
container_volume | 46 |
creator | Qian, Shuqu Ye, Yongqiang Jiang, Bin Wang, Jianhong |
description | An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite. |
doi_str_mv | 10.1109/TCYB.2015.2461651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812885817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7194788</ieee_id><sourcerecordid>4152315301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWrQ_QARZ8OKlNZP9yOTYFr_A6sF68LQku7Oash91syvorze1tQdzmfDOM8PwMHYKfAzA1dVi9jodCw7xWEQJJDHssYGABEdCyHh_90_kERs6t-T-oY8UHrIjkQiMRcgH7HHW1K5rta0pD-Z92dnGLCnr7CcFT6vOVvZb-6wOJuVb09ruvQqm2nnWR_dV1dcUPH-5jqpg3uRUnrCDQpeOhtt6zF5urhezu9HD0-39bPIwysJIdaMcTYRZVEBO3BgTgcKCZK5QIjfEwwI0GhVLLoUo0BRaYaijMInCGBRXIjxml5u9q7b56Ml1aWVdRmWpa2p6lwKCQIwRpEcv_qHLpm9rf90vFXt5CJ6CDZW1jXMtFemqtZVuv1Lg6dp3uvadrn2nW99-5ny7uTcV5buJP7seONsAloh2bQkqkojhDwD9grY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812546181</pqid></control><display><type>article</type><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><source>IEEE Xplore</source><creator>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</creator><creatorcontrib>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</creatorcontrib><description>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2461651</identifier><identifier>PMID: 26285230</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; B-Lymphocytes - immunology ; Cloning ; Computational Biology - methods ; Heuristic algorithms ; Immune algorithm (IA) ; Immune system ; Immune System - immunology ; Linear programming ; Mathematical programming ; Models, Immunological ; multiobjective optimization ; nonlinear constraint ; Optimization ; Optimization algorithms ; Population ; Sociology ; Statistics ; transformation mechanism</subject><ispartof>IEEE transactions on cybernetics, 2016-09, Vol.46 (9), p.2056-2069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</citedby><cites>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7194788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7194788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26285230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Shuqu</creatorcontrib><creatorcontrib>Ye, Yongqiang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhong</creatorcontrib><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</description><subject>Algorithms</subject><subject>Animals</subject><subject>B-Lymphocytes - immunology</subject><subject>Cloning</subject><subject>Computational Biology - methods</subject><subject>Heuristic algorithms</subject><subject>Immune algorithm (IA)</subject><subject>Immune system</subject><subject>Immune System - immunology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Models, Immunological</subject><subject>multiobjective optimization</subject><subject>nonlinear constraint</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Sociology</subject><subject>Statistics</subject><subject>transformation mechanism</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMoWrQ_QARZ8OKlNZP9yOTYFr_A6sF68LQku7Oash91syvorze1tQdzmfDOM8PwMHYKfAzA1dVi9jodCw7xWEQJJDHssYGABEdCyHh_90_kERs6t-T-oY8UHrIjkQiMRcgH7HHW1K5rta0pD-Z92dnGLCnr7CcFT6vOVvZb-6wOJuVb09ruvQqm2nnWR_dV1dcUPH-5jqpg3uRUnrCDQpeOhtt6zF5urhezu9HD0-39bPIwysJIdaMcTYRZVEBO3BgTgcKCZK5QIjfEwwI0GhVLLoUo0BRaYaijMInCGBRXIjxml5u9q7b56Ml1aWVdRmWpa2p6lwKCQIwRpEcv_qHLpm9rf90vFXt5CJ6CDZW1jXMtFemqtZVuv1Lg6dp3uvadrn2nW99-5ny7uTcV5buJP7seONsAloh2bQkqkojhDwD9grY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Qian, Shuqu</creator><creator>Ye, Yongqiang</creator><creator>Jiang, Bin</creator><creator>Wang, Jianhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><author>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>B-Lymphocytes - immunology</topic><topic>Cloning</topic><topic>Computational Biology - methods</topic><topic>Heuristic algorithms</topic><topic>Immune algorithm (IA)</topic><topic>Immune system</topic><topic>Immune System - immunology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Models, Immunological</topic><topic>multiobjective optimization</topic><topic>nonlinear constraint</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Sociology</topic><topic>Statistics</topic><topic>transformation mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Shuqu</creatorcontrib><creatorcontrib>Ye, Yongqiang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Shuqu</au><au>Ye, Yongqiang</au><au>Jiang, Bin</au><au>Wang, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2016-09</date><risdate>2016</risdate><volume>46</volume><issue>9</issue><spage>2056</spage><epage>2069</epage><pages>2056-2069</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26285230</pmid><doi>10.1109/TCYB.2015.2461651</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2016-09, Vol.46 (9), p.2056-2069 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_1812885817 |
source | IEEE Xplore |
subjects | Algorithms Animals B-Lymphocytes - immunology Cloning Computational Biology - methods Heuristic algorithms Immune algorithm (IA) Immune system Immune System - immunology Linear programming Mathematical programming Models, Immunological multiobjective optimization nonlinear constraint Optimization Optimization algorithms Population Sociology Statistics transformation mechanism |
title | Constrained Multiobjective Optimization Algorithm Based on Immune System Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Multiobjective%20Optimization%20Algorithm%20Based%20on%20Immune%20System%20Model&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Qian,%20Shuqu&rft.date=2016-09&rft.volume=46&rft.issue=9&rft.spage=2056&rft.epage=2069&rft.pages=2056-2069&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2461651&rft_dat=%3Cproquest_RIE%3E4152315301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812546181&rft_id=info:pmid/26285230&rft_ieee_id=7194788&rfr_iscdi=true |