Constrained Multiobjective Optimization Algorithm Based on Immune System Model

An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2016-09, Vol.46 (9), p.2056-2069
Hauptverfasser: Qian, Shuqu, Ye, Yongqiang, Jiang, Bin, Wang, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2069
container_issue 9
container_start_page 2056
container_title IEEE transactions on cybernetics
container_volume 46
creator Qian, Shuqu
Ye, Yongqiang
Jiang, Bin
Wang, Jianhong
description An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.
doi_str_mv 10.1109/TCYB.2015.2461651
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812885817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7194788</ieee_id><sourcerecordid>4152315301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWrQ_QARZ8OKlNZP9yOTYFr_A6sF68LQku7Oash91syvorze1tQdzmfDOM8PwMHYKfAzA1dVi9jodCw7xWEQJJDHssYGABEdCyHh_90_kERs6t-T-oY8UHrIjkQiMRcgH7HHW1K5rta0pD-Z92dnGLCnr7CcFT6vOVvZb-6wOJuVb09ruvQqm2nnWR_dV1dcUPH-5jqpg3uRUnrCDQpeOhtt6zF5urhezu9HD0-39bPIwysJIdaMcTYRZVEBO3BgTgcKCZK5QIjfEwwI0GhVLLoUo0BRaYaijMInCGBRXIjxml5u9q7b56Ml1aWVdRmWpa2p6lwKCQIwRpEcv_qHLpm9rf90vFXt5CJ6CDZW1jXMtFemqtZVuv1Lg6dp3uvadrn2nW99-5ny7uTcV5buJP7seONsAloh2bQkqkojhDwD9grY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812546181</pqid></control><display><type>article</type><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><source>IEEE Xplore</source><creator>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</creator><creatorcontrib>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</creatorcontrib><description>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2015.2461651</identifier><identifier>PMID: 26285230</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Animals ; B-Lymphocytes - immunology ; Cloning ; Computational Biology - methods ; Heuristic algorithms ; Immune algorithm (IA) ; Immune system ; Immune System - immunology ; Linear programming ; Mathematical programming ; Models, Immunological ; multiobjective optimization ; nonlinear constraint ; Optimization ; Optimization algorithms ; Population ; Sociology ; Statistics ; transformation mechanism</subject><ispartof>IEEE transactions on cybernetics, 2016-09, Vol.46 (9), p.2056-2069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</citedby><cites>FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7194788$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7194788$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26285230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qian, Shuqu</creatorcontrib><creatorcontrib>Ye, Yongqiang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhong</creatorcontrib><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</description><subject>Algorithms</subject><subject>Animals</subject><subject>B-Lymphocytes - immunology</subject><subject>Cloning</subject><subject>Computational Biology - methods</subject><subject>Heuristic algorithms</subject><subject>Immune algorithm (IA)</subject><subject>Immune system</subject><subject>Immune System - immunology</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Models, Immunological</subject><subject>multiobjective optimization</subject><subject>nonlinear constraint</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Population</subject><subject>Sociology</subject><subject>Statistics</subject><subject>transformation mechanism</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMoWrQ_QARZ8OKlNZP9yOTYFr_A6sF68LQku7Oash91syvorze1tQdzmfDOM8PwMHYKfAzA1dVi9jodCw7xWEQJJDHssYGABEdCyHh_90_kERs6t-T-oY8UHrIjkQiMRcgH7HHW1K5rta0pD-Z92dnGLCnr7CcFT6vOVvZb-6wOJuVb09ruvQqm2nnWR_dV1dcUPH-5jqpg3uRUnrCDQpeOhtt6zF5urhezu9HD0-39bPIwysJIdaMcTYRZVEBO3BgTgcKCZK5QIjfEwwI0GhVLLoUo0BRaYaijMInCGBRXIjxml5u9q7b56Ml1aWVdRmWpa2p6lwKCQIwRpEcv_qHLpm9rf90vFXt5CJ6CDZW1jXMtFemqtZVuv1Lg6dp3uvadrn2nW99-5ny7uTcV5buJP7seONsAloh2bQkqkojhDwD9grY</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Qian, Shuqu</creator><creator>Ye, Yongqiang</creator><creator>Jiang, Bin</creator><creator>Wang, Jianhong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</title><author>Qian, Shuqu ; Ye, Yongqiang ; Jiang, Bin ; Wang, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d8b48c4f1de0bbb4198fe7d98780be03f1a8b9570722f8bfa983a436435190923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>B-Lymphocytes - immunology</topic><topic>Cloning</topic><topic>Computational Biology - methods</topic><topic>Heuristic algorithms</topic><topic>Immune algorithm (IA)</topic><topic>Immune system</topic><topic>Immune System - immunology</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Models, Immunological</topic><topic>multiobjective optimization</topic><topic>nonlinear constraint</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Population</topic><topic>Sociology</topic><topic>Statistics</topic><topic>transformation mechanism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Shuqu</creatorcontrib><creatorcontrib>Ye, Yongqiang</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Jianhong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qian, Shuqu</au><au>Ye, Yongqiang</au><au>Jiang, Bin</au><au>Wang, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constrained Multiobjective Optimization Algorithm Based on Immune System Model</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2016-09</date><risdate>2016</risdate><volume>46</volume><issue>9</issue><spage>2056</spage><epage>2069</epage><pages>2056-2069</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>An immune optimization algorithm, based on the model of biological immune system, is proposed to solve multiobjective optimization problems with multimodal nonlinear constraints. First, the initial population is divided into feasible nondominated population and infeasible/dominated population. The feasible nondominated individuals focus on exploring the nondominated front through clone and hypermutation based on a proposed affinity design approach, while the infeasible/dominated individuals are exploited and improved via the simulated binary crossover and polynomial mutation operations. And then, to accelerate the convergence of the proposed algorithm, a transformation technique is applied to the combined population of the above two offspring populations. Finally, a crowded-comparison strategy is used to create the next generation population. In numerical experiments, a series of benchmark constrained multiobjective optimization problems are considered to evaluate the performance of the proposed algorithm and it is also compared to several state-of-art algorithms in terms of the inverted generational distance and hypervolume indicators. The results indicate that the new method achieves competitive performance and even statistically significant better results than previous algorithms do on most of the benchmark suite.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26285230</pmid><doi>10.1109/TCYB.2015.2461651</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2016-09, Vol.46 (9), p.2056-2069
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_1812885817
source IEEE Xplore
subjects Algorithms
Animals
B-Lymphocytes - immunology
Cloning
Computational Biology - methods
Heuristic algorithms
Immune algorithm (IA)
Immune system
Immune System - immunology
Linear programming
Mathematical programming
Models, Immunological
multiobjective optimization
nonlinear constraint
Optimization
Optimization algorithms
Population
Sociology
Statistics
transformation mechanism
title Constrained Multiobjective Optimization Algorithm Based on Immune System Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constrained%20Multiobjective%20Optimization%20Algorithm%20Based%20on%20Immune%20System%20Model&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Qian,%20Shuqu&rft.date=2016-09&rft.volume=46&rft.issue=9&rft.spage=2056&rft.epage=2069&rft.pages=2056-2069&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2015.2461651&rft_dat=%3Cproquest_RIE%3E4152315301%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812546181&rft_id=info:pmid/26285230&rft_ieee_id=7194788&rfr_iscdi=true