Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process

[Display omitted] •Biological pretreatment showed 60.4% lignin removal from the sugarcane top.•Confocal microscopic and FTIR analysis confirmed lignin reduction.•Biohythane production enhanced the gaseous energy recovery up to 37.7%.•Unstructured model was used to determine the kinetics of product f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2016-10, Vol.218, p.1090-1097
Hauptverfasser: Kumari, Sinu, Das, Debabrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue
container_start_page 1090
container_title Bioresource technology
container_volume 218
creator Kumari, Sinu
Das, Debabrata
description [Display omitted] •Biological pretreatment showed 60.4% lignin removal from the sugarcane top.•Confocal microscopic and FTIR analysis confirmed lignin reduction.•Biohythane production enhanced the gaseous energy recovery up to 37.7%.•Unstructured model was used to determine the kinetics of product formation.•Material balance analysis showed the feasibility of the process. The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one.
doi_str_mv 10.1016/j.biortech.2016.07.070
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1812442137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852416310495</els_id><sourcerecordid>1812442137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-3c99e4d84f449d27dc54e403d6b3aaef799355e91cf3fa1aeffdd5a900f6f1243</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi1ERZfCK1Q-cslix44d34CKFqRKXOjZ8trjxKtkHWxvq7wFj4xX23IFaSRrRt_MP54foWtKtpRQ8XG_3YWYCthx29Z8S2QN8gptaC9Z0yopXqMNUYI0fdfyS_Q25z0hhFHZvkGXreRCkV5t0O8vIU5xCNZM04qXBCWBKeBwPg4mWXMAXOKCTcYGL7HAoQQz4WSe8FyxdEp8TLiMgOEwmoOFuTI4ejyYDPGYaxnSsOIENj5CWvFuxeUp4lzMALh-YlzLeJJZUrSQ8zt04c2U4f3ze4Uebr_-vPnW3P-4-37z-b6xnPWlYVYp4K7nnnPlWulsx4ET5sSOGQNeKsW6DhS1nnlDa8U71xlFiBeetpxdoQ_nuVX31xFy0XPIFqap7lLX1rRnQnSs5_1_oHUgbymTFRVn1KaYcwKvlxRmk1ZNiT4Zp_f6xTh9Mk4TWYPUxutnjeNuBve37cWpCnw6A1CP8hgg6WwD1Hu7UE9btIvhXxp_ANc7sSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812442137</pqid></control><display><type>article</type><title>Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kumari, Sinu ; Das, Debabrata</creator><creatorcontrib>Kumari, Sinu ; Das, Debabrata</creatorcontrib><description>[Display omitted] •Biological pretreatment showed 60.4% lignin removal from the sugarcane top.•Confocal microscopic and FTIR analysis confirmed lignin reduction.•Biohythane production enhanced the gaseous energy recovery up to 37.7%.•Unstructured model was used to determine the kinetics of product formation.•Material balance analysis showed the feasibility of the process. The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2016.07.070</identifier><identifier>PMID: 27469089</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>biodegradation ; Biofuels - analysis ; Biohydrogen ; Biohythane ; Biological pretreatment ; Biomass ; Biomethane ; Biotechnology - methods ; Cellulose - analysis ; confocal microscopy ; Energy recovery ; Fermentation ; Gases - chemistry ; Hydrogen - metabolism ; hydrogen production ; Hydrogen-Ion Concentration ; Hydrolysis ; Kinetics ; lignin ; Lignin - analysis ; lignocellulose ; Methane - analysis ; methane production ; Pleurotus - metabolism ; Polysaccharides - analysis ; raw materials ; Saccharum - metabolism ; Spectroscopy, Fourier Transform Infrared ; sugarcane ; Sugarcane top</subject><ispartof>Bioresource technology, 2016-10, Vol.218, p.1090-1097</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-3c99e4d84f449d27dc54e403d6b3aaef799355e91cf3fa1aeffdd5a900f6f1243</citedby><cites>FETCH-LOGICAL-c438t-3c99e4d84f449d27dc54e403d6b3aaef799355e91cf3fa1aeffdd5a900f6f1243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852416310495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27469089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kumari, Sinu</creatorcontrib><creatorcontrib>Das, Debabrata</creatorcontrib><title>Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •Biological pretreatment showed 60.4% lignin removal from the sugarcane top.•Confocal microscopic and FTIR analysis confirmed lignin reduction.•Biohythane production enhanced the gaseous energy recovery up to 37.7%.•Unstructured model was used to determine the kinetics of product formation.•Material balance analysis showed the feasibility of the process. The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one.</description><subject>biodegradation</subject><subject>Biofuels - analysis</subject><subject>Biohydrogen</subject><subject>Biohythane</subject><subject>Biological pretreatment</subject><subject>Biomass</subject><subject>Biomethane</subject><subject>Biotechnology - methods</subject><subject>Cellulose - analysis</subject><subject>confocal microscopy</subject><subject>Energy recovery</subject><subject>Fermentation</subject><subject>Gases - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>hydrogen production</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>lignin</subject><subject>Lignin - analysis</subject><subject>lignocellulose</subject><subject>Methane - analysis</subject><subject>methane production</subject><subject>Pleurotus - metabolism</subject><subject>Polysaccharides - analysis</subject><subject>raw materials</subject><subject>Saccharum - metabolism</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>sugarcane</subject><subject>Sugarcane top</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi1ERZfCK1Q-cslix44d34CKFqRKXOjZ8trjxKtkHWxvq7wFj4xX23IFaSRrRt_MP54foWtKtpRQ8XG_3YWYCthx29Z8S2QN8gptaC9Z0yopXqMNUYI0fdfyS_Q25z0hhFHZvkGXreRCkV5t0O8vIU5xCNZM04qXBCWBKeBwPg4mWXMAXOKCTcYGL7HAoQQz4WSe8FyxdEp8TLiMgOEwmoOFuTI4ejyYDPGYaxnSsOIENj5CWvFuxeUp4lzMALh-YlzLeJJZUrSQ8zt04c2U4f3ze4Uebr_-vPnW3P-4-37z-b6xnPWlYVYp4K7nnnPlWulsx4ET5sSOGQNeKsW6DhS1nnlDa8U71xlFiBeetpxdoQ_nuVX31xFy0XPIFqap7lLX1rRnQnSs5_1_oHUgbymTFRVn1KaYcwKvlxRmk1ZNiT4Zp_f6xTh9Mk4TWYPUxutnjeNuBve37cWpCnw6A1CP8hgg6WwD1Hu7UE9btIvhXxp_ANc7sSc</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kumari, Sinu</creator><creator>Das, Debabrata</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20161001</creationdate><title>Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process</title><author>Kumari, Sinu ; Das, Debabrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-3c99e4d84f449d27dc54e403d6b3aaef799355e91cf3fa1aeffdd5a900f6f1243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>biodegradation</topic><topic>Biofuels - analysis</topic><topic>Biohydrogen</topic><topic>Biohythane</topic><topic>Biological pretreatment</topic><topic>Biomass</topic><topic>Biomethane</topic><topic>Biotechnology - methods</topic><topic>Cellulose - analysis</topic><topic>confocal microscopy</topic><topic>Energy recovery</topic><topic>Fermentation</topic><topic>Gases - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>hydrogen production</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>lignin</topic><topic>Lignin - analysis</topic><topic>lignocellulose</topic><topic>Methane - analysis</topic><topic>methane production</topic><topic>Pleurotus - metabolism</topic><topic>Polysaccharides - analysis</topic><topic>raw materials</topic><topic>Saccharum - metabolism</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>sugarcane</topic><topic>Sugarcane top</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumari, Sinu</creatorcontrib><creatorcontrib>Das, Debabrata</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumari, Sinu</au><au>Das, Debabrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>218</volume><spage>1090</spage><epage>1097</epage><pages>1090-1097</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Biological pretreatment showed 60.4% lignin removal from the sugarcane top.•Confocal microscopic and FTIR analysis confirmed lignin reduction.•Biohythane production enhanced the gaseous energy recovery up to 37.7%.•Unstructured model was used to determine the kinetics of product formation.•Material balance analysis showed the feasibility of the process. The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27469089</pmid><doi>10.1016/j.biortech.2016.07.070</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2016-10, Vol.218, p.1090-1097
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1812442137
source MEDLINE; Elsevier ScienceDirect Journals
subjects biodegradation
Biofuels - analysis
Biohydrogen
Biohythane
Biological pretreatment
Biomass
Biomethane
Biotechnology - methods
Cellulose - analysis
confocal microscopy
Energy recovery
Fermentation
Gases - chemistry
Hydrogen - metabolism
hydrogen production
Hydrogen-Ion Concentration
Hydrolysis
Kinetics
lignin
Lignin - analysis
lignocellulose
Methane - analysis
methane production
Pleurotus - metabolism
Polysaccharides - analysis
raw materials
Saccharum - metabolism
Spectroscopy, Fourier Transform Infrared
sugarcane
Sugarcane top
title Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biologically%20pretreated%20sugarcane%20top%20as%20a%20potential%20raw%20material%20for%20the%20enhancement%20of%20gaseous%20energy%20recovery%20by%20two%20stage%20biohythane%20process&rft.jtitle=Bioresource%20technology&rft.au=Kumari,%20Sinu&rft.date=2016-10-01&rft.volume=218&rft.spage=1090&rft.epage=1097&rft.pages=1090-1097&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2016.07.070&rft_dat=%3Cproquest_cross%3E1812442137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812442137&rft_id=info:pmid/27469089&rft_els_id=S0960852416310495&rfr_iscdi=true