Development of a regression model to forecast ground-level ozone concentration in Louisville, KY

To support ozone forecasting and episodic air pollution control initiatives in the Louisville metropolitan area, a multiple-linear regression model to predict daily domain-peak ground-level ozone concentration [O 3] has been developed and validated. Using only surface meteorological data from 1993–1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 1998-08, Vol.32 (14), p.2637-2647
Hauptverfasser: Hubbard, Milton C., Cobourn, W.Geoffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2647
container_issue 14
container_start_page 2637
container_title Atmospheric environment (1994)
container_volume 32
creator Hubbard, Milton C.
Cobourn, W.Geoffrey
description To support ozone forecasting and episodic air pollution control initiatives in the Louisville metropolitan area, a multiple-linear regression model to predict daily domain-peak ground-level ozone concentration [O 3] has been developed and validated. Using only surface meteorological data from 1993–1996 and making extensive use of parametric transformations to improve accuracy, the ten parameter model has a standard error of prediction of 12.1 ppb and an explained variance of 0.70. Retrospective ozone forecasts were made for each day of the four ozone seasons (May–September) using archival meteorological data as input to the model. For the period 1993–1996 examined, 50% of days were forecast to within ±7.6 ppb, and on 80% of days the accuracy was within ±14.8 ppb. The model correctly predicted 74, 80, and 40% of occurrences of the daily “good” ([O 3]⩽60 ppb), “moderate” (60
doi_str_mv 10.1016/S1352-2310(97)00444-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18119928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231097004445</els_id><sourcerecordid>18119928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-be19fae4b74b6d50a35b3350785693dd77c73488aea3d54cb15a6e9a271bfd2d3</originalsourceid><addsrcrecordid>eNqFkMtOxCAUQBujiePoJ5iwMEYTq1CgtCtjxmecxIW6cIUUbicYpozQmUS_XuahW1ewOIfLPVl2SPA5waS8eCaUF3lBCT6pxSnGjLGcb2UDUgmaFxVj2-n-i-xmezF-YIypqMUge7-GBTg_m0LXI98ihQJMAsRofYem3oBDvUetD6BV7NEk-HlncreUkP_2HSDtO53koPqlYjs09nMbF9Y5OEOPb_vZTqtchIPNOcxeb29eRvf5-OnuYXQ1zjUtRZ83QOpWAWsEa0rDsaK8oZRjUfGypsYIoQVlVaVAUcOZbghXJdSqEKRpTWHoMDtevzsL_nMOsZdTGzU4pzrw8yhJRUhdF1UC-RrUwccYoJWzYKcqfEmC5bKnXPWUy1iyFnLVU_LkHW0GqKiVa4PqtI1_ckFZmX6bsMs1BmnZhYUgo7aQEhmbGvbSePvPoB9fxorO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18119928</pqid></control><display><type>article</type><title>Development of a regression model to forecast ground-level ozone concentration in Louisville, KY</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hubbard, Milton C. ; Cobourn, W.Geoffrey</creator><creatorcontrib>Hubbard, Milton C. ; Cobourn, W.Geoffrey</creatorcontrib><description>To support ozone forecasting and episodic air pollution control initiatives in the Louisville metropolitan area, a multiple-linear regression model to predict daily domain-peak ground-level ozone concentration [O 3] has been developed and validated. Using only surface meteorological data from 1993–1996 and making extensive use of parametric transformations to improve accuracy, the ten parameter model has a standard error of prediction of 12.1 ppb and an explained variance of 0.70. Retrospective ozone forecasts were made for each day of the four ozone seasons (May–September) using archival meteorological data as input to the model. For the period 1993–1996 examined, 50% of days were forecast to within ±7.6 ppb, and on 80% of days the accuracy was within ±14.8 ppb. The model correctly predicted 74, 80, and 40% of occurrences of the daily “good” ([O 3]⩽60 ppb), “moderate” (60&lt;[O 3]⩽95), and “approaching unhealthful” (95&lt;[O 3]⩽120) air quality categories, respectively. The model did not predict any of the nine exceedances of the National Ambient Air Quality Standard ([O 3] &gt;120) which occurred over the four year period. Simple supplementary meteorological criteria were developed that correctly forecast 89% of NAAQS exceedances. Used in combination with forecaster experience, synoptic weather information, and supplementary meteorological criteria, the regression model can be a useful tool for improving the accuracy of local O 3 forecasts.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/S1352-2310(97)00444-5</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>air pollution ; air quality ; Applied sciences ; Atmospheric pollution ; Exact sciences and technology ; Photochemical ozone ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution</subject><ispartof>Atmospheric environment (1994), 1998-08, Vol.32 (14), p.2637-2647</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-be19fae4b74b6d50a35b3350785693dd77c73488aea3d54cb15a6e9a271bfd2d3</citedby><cites>FETCH-LOGICAL-c367t-be19fae4b74b6d50a35b3350785693dd77c73488aea3d54cb15a6e9a271bfd2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1352-2310(97)00444-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2346078$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hubbard, Milton C.</creatorcontrib><creatorcontrib>Cobourn, W.Geoffrey</creatorcontrib><title>Development of a regression model to forecast ground-level ozone concentration in Louisville, KY</title><title>Atmospheric environment (1994)</title><description>To support ozone forecasting and episodic air pollution control initiatives in the Louisville metropolitan area, a multiple-linear regression model to predict daily domain-peak ground-level ozone concentration [O 3] has been developed and validated. Using only surface meteorological data from 1993–1996 and making extensive use of parametric transformations to improve accuracy, the ten parameter model has a standard error of prediction of 12.1 ppb and an explained variance of 0.70. Retrospective ozone forecasts were made for each day of the four ozone seasons (May–September) using archival meteorological data as input to the model. For the period 1993–1996 examined, 50% of days were forecast to within ±7.6 ppb, and on 80% of days the accuracy was within ±14.8 ppb. The model correctly predicted 74, 80, and 40% of occurrences of the daily “good” ([O 3]⩽60 ppb), “moderate” (60&lt;[O 3]⩽95), and “approaching unhealthful” (95&lt;[O 3]⩽120) air quality categories, respectively. The model did not predict any of the nine exceedances of the National Ambient Air Quality Standard ([O 3] &gt;120) which occurred over the four year period. Simple supplementary meteorological criteria were developed that correctly forecast 89% of NAAQS exceedances. Used in combination with forecaster experience, synoptic weather information, and supplementary meteorological criteria, the regression model can be a useful tool for improving the accuracy of local O 3 forecasts.</description><subject>air pollution</subject><subject>air quality</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Exact sciences and technology</subject><subject>Photochemical ozone</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOxCAUQBujiePoJ5iwMEYTq1CgtCtjxmecxIW6cIUUbicYpozQmUS_XuahW1ewOIfLPVl2SPA5waS8eCaUF3lBCT6pxSnGjLGcb2UDUgmaFxVj2-n-i-xmezF-YIypqMUge7-GBTg_m0LXI98ihQJMAsRofYem3oBDvUetD6BV7NEk-HlncreUkP_2HSDtO53koPqlYjs09nMbF9Y5OEOPb_vZTqtchIPNOcxeb29eRvf5-OnuYXQ1zjUtRZ83QOpWAWsEa0rDsaK8oZRjUfGypsYIoQVlVaVAUcOZbghXJdSqEKRpTWHoMDtevzsL_nMOsZdTGzU4pzrw8yhJRUhdF1UC-RrUwccYoJWzYKcqfEmC5bKnXPWUy1iyFnLVU_LkHW0GqKiVa4PqtI1_ckFZmX6bsMs1BmnZhYUgo7aQEhmbGvbSePvPoB9fxorO</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Hubbard, Milton C.</creator><creator>Cobourn, W.Geoffrey</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19980801</creationdate><title>Development of a regression model to forecast ground-level ozone concentration in Louisville, KY</title><author>Hubbard, Milton C. ; Cobourn, W.Geoffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-be19fae4b74b6d50a35b3350785693dd77c73488aea3d54cb15a6e9a271bfd2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>air pollution</topic><topic>air quality</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Exact sciences and technology</topic><topic>Photochemical ozone</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hubbard, Milton C.</creatorcontrib><creatorcontrib>Cobourn, W.Geoffrey</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hubbard, Milton C.</au><au>Cobourn, W.Geoffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a regression model to forecast ground-level ozone concentration in Louisville, KY</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>1998-08-01</date><risdate>1998</risdate><volume>32</volume><issue>14</issue><spage>2637</spage><epage>2647</epage><pages>2637-2647</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>To support ozone forecasting and episodic air pollution control initiatives in the Louisville metropolitan area, a multiple-linear regression model to predict daily domain-peak ground-level ozone concentration [O 3] has been developed and validated. Using only surface meteorological data from 1993–1996 and making extensive use of parametric transformations to improve accuracy, the ten parameter model has a standard error of prediction of 12.1 ppb and an explained variance of 0.70. Retrospective ozone forecasts were made for each day of the four ozone seasons (May–September) using archival meteorological data as input to the model. For the period 1993–1996 examined, 50% of days were forecast to within ±7.6 ppb, and on 80% of days the accuracy was within ±14.8 ppb. The model correctly predicted 74, 80, and 40% of occurrences of the daily “good” ([O 3]⩽60 ppb), “moderate” (60&lt;[O 3]⩽95), and “approaching unhealthful” (95&lt;[O 3]⩽120) air quality categories, respectively. The model did not predict any of the nine exceedances of the National Ambient Air Quality Standard ([O 3] &gt;120) which occurred over the four year period. Simple supplementary meteorological criteria were developed that correctly forecast 89% of NAAQS exceedances. Used in combination with forecaster experience, synoptic weather information, and supplementary meteorological criteria, the regression model can be a useful tool for improving the accuracy of local O 3 forecasts.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1352-2310(97)00444-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 1998-08, Vol.32 (14), p.2637-2647
issn 1352-2310
1873-2844
language eng
recordid cdi_proquest_miscellaneous_18119928
source Elsevier ScienceDirect Journals Complete
subjects air pollution
air quality
Applied sciences
Atmospheric pollution
Exact sciences and technology
Photochemical ozone
Pollutants physicochemistry study: properties, effects, reactions, transport and distribution
Pollution
title Development of a regression model to forecast ground-level ozone concentration in Louisville, KY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A12%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20regression%20model%20to%20forecast%20ground-level%20ozone%20concentration%20in%20Louisville,%20KY&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Hubbard,%20Milton%20C.&rft.date=1998-08-01&rft.volume=32&rft.issue=14&rft.spage=2637&rft.epage=2647&rft.pages=2637-2647&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/S1352-2310(97)00444-5&rft_dat=%3Cproquest_cross%3E18119928%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18119928&rft_id=info:pmid/&rft_els_id=S1352231097004445&rfr_iscdi=true