Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay

Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in sil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular informatics 2016-07, Vol.35 (6-7), p.262-267
Hauptverfasser: Wang, Xuyang, Hou, Dianqi, Dai, Weiwei, Gao, Wenwei, Ju, Shiming, Cao, Heli, Zhang, Lin, Wang, Gan, Guo, Yan, Chen, Shiwen, Tian, Hengli, Li, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 267
container_issue 6-7
container_start_page 262
container_title Molecular informatics
container_volume 35
creator Wang, Xuyang
Hou, Dianqi
Dai, Weiwei
Gao, Wenwei
Ju, Shiming
Cao, Heli
Zhang, Lin
Wang, Gan
Guo, Yan
Chen, Shiwen
Tian, Hengli
Li, Zhiqiang
description Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.
doi_str_mv 10.1002/minf.201501022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811898189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811898189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEolXplSOyxIVLFtuJE4fbdku7lbYLokVFXCzHGbduE3uxk0J4KJ4Rt2lXiAtYsmxpvvlGoz9JXhI8IxjTt52xekYxYZhgSp8ku4QXPCUlI0-3_zzbSfZDuMbxZLQoefU82aFlXlGa493k1yF4cyt74yxyGp1Bq1Njr0xteudHtITWKNmij7DpTQMB9Q6dS38JPfp05dIbY2UAdGi6aPk5WYxFC_BQe3crgxpa6dGpbLXz3X39HTrr_aD6wUftgXFxhamkAppb2Y7BBCRt8zgyMrYx9hLNQ5Dji-SZlm2A_Yd3L_l89P58sUxXH45PFvNVqnJOaKpKTCXPoKQEONa1piRjimhZ1TgDQmVdasCUZwUuKM_zHMuccYwhZ5qpssn2kjeTd-PdtwFCLzoTFLSttOCGIAgnhFc83v9AcVXgkhU8oq__Qq_d4OPS9xSjlOKKRWo2Ucq7EDxosfGmk34UBIu73MVd7mKbe2x49aAd6g6aLf6YcgSqCfhuWhj_oROnJ-ujP-Xp1GtCDz-2vdLfiKLMSiYu1sfi68EFXy-_cLHKfgNF98ql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805222095</pqid></control><display><type>article</type><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</creator><creatorcontrib>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</creatorcontrib><description>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201501022</identifier><identifier>PMID: 27492240</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bioinformatics ; cerebrovascular malformation ; Crystal structure ; dimerization ; Drug Evaluation, Preclinical ; Fluorescence Polarization ; Intracranial Arteriovenous Malformations - drug therapy ; Intracranial Arteriovenous Malformations - enzymology ; Kinases ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Interaction Domains and Motifs ; Protein Kinase Inhibitors - chemistry ; Protein Multimerization ; rho-Associated Kinases - chemistry ; Rho-kinase ; self-inhibitory peptide ; Thermodynamics</subject><ispartof>Molecular informatics, 2016-07, Vol.35 (6-7), p.262-267</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</citedby><cites>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201501022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201501022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27492240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuyang</creatorcontrib><creatorcontrib>Hou, Dianqi</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Gao, Wenwei</creatorcontrib><creatorcontrib>Ju, Shiming</creatorcontrib><creatorcontrib>Cao, Heli</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Gan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Chen, Shiwen</creatorcontrib><creatorcontrib>Tian, Hengli</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</description><subject>Bioinformatics</subject><subject>cerebrovascular malformation</subject><subject>Crystal structure</subject><subject>dimerization</subject><subject>Drug Evaluation, Preclinical</subject><subject>Fluorescence Polarization</subject><subject>Intracranial Arteriovenous Malformations - drug therapy</subject><subject>Intracranial Arteriovenous Malformations - enzymology</subject><subject>Kinases</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Multimerization</subject><subject>rho-Associated Kinases - chemistry</subject><subject>Rho-kinase</subject><subject>self-inhibitory peptide</subject><subject>Thermodynamics</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhiMEolXplSOyxIVLFtuJE4fbdku7lbYLokVFXCzHGbduE3uxk0J4KJ4Rt2lXiAtYsmxpvvlGoz9JXhI8IxjTt52xekYxYZhgSp8ku4QXPCUlI0-3_zzbSfZDuMbxZLQoefU82aFlXlGa493k1yF4cyt74yxyGp1Bq1Njr0xteudHtITWKNmij7DpTQMB9Q6dS38JPfp05dIbY2UAdGi6aPk5WYxFC_BQe3crgxpa6dGpbLXz3X39HTrr_aD6wUftgXFxhamkAppb2Y7BBCRt8zgyMrYx9hLNQ5Dji-SZlm2A_Yd3L_l89P58sUxXH45PFvNVqnJOaKpKTCXPoKQEONa1piRjimhZ1TgDQmVdasCUZwUuKM_zHMuccYwhZ5qpssn2kjeTd-PdtwFCLzoTFLSttOCGIAgnhFc83v9AcVXgkhU8oq__Qq_d4OPS9xSjlOKKRWo2Ucq7EDxosfGmk34UBIu73MVd7mKbe2x49aAd6g6aLf6YcgSqCfhuWhj_oROnJ-ujP-Xp1GtCDz-2vdLfiKLMSiYu1sfi68EFXy-_cLHKfgNF98ql</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Wang, Xuyang</creator><creator>Hou, Dianqi</creator><creator>Dai, Weiwei</creator><creator>Gao, Wenwei</creator><creator>Ju, Shiming</creator><creator>Cao, Heli</creator><creator>Zhang, Lin</creator><creator>Wang, Gan</creator><creator>Guo, Yan</creator><creator>Chen, Shiwen</creator><creator>Tian, Hengli</creator><creator>Li, Zhiqiang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><author>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioinformatics</topic><topic>cerebrovascular malformation</topic><topic>Crystal structure</topic><topic>dimerization</topic><topic>Drug Evaluation, Preclinical</topic><topic>Fluorescence Polarization</topic><topic>Intracranial Arteriovenous Malformations - drug therapy</topic><topic>Intracranial Arteriovenous Malformations - enzymology</topic><topic>Kinases</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Multimerization</topic><topic>rho-Associated Kinases - chemistry</topic><topic>Rho-kinase</topic><topic>self-inhibitory peptide</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuyang</creatorcontrib><creatorcontrib>Hou, Dianqi</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Gao, Wenwei</creatorcontrib><creatorcontrib>Ju, Shiming</creatorcontrib><creatorcontrib>Cao, Heli</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Gan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Chen, Shiwen</creatorcontrib><creatorcontrib>Tian, Hengli</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuyang</au><au>Hou, Dianqi</au><au>Dai, Weiwei</au><au>Gao, Wenwei</au><au>Ju, Shiming</au><au>Cao, Heli</au><au>Zhang, Lin</au><au>Wang, Gan</au><au>Guo, Yan</au><au>Chen, Shiwen</au><au>Tian, Hengli</au><au>Li, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2016-07</date><risdate>2016</risdate><volume>35</volume><issue>6-7</issue><spage>262</spage><epage>267</epage><pages>262-267</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27492240</pmid><doi>10.1002/minf.201501022</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-1743
ispartof Molecular informatics, 2016-07, Vol.35 (6-7), p.262-267
issn 1868-1743
1868-1751
language eng
recordid cdi_proquest_miscellaneous_1811898189
source MEDLINE; Wiley Online Library All Journals
subjects Bioinformatics
cerebrovascular malformation
Crystal structure
dimerization
Drug Evaluation, Preclinical
Fluorescence Polarization
Intracranial Arteriovenous Malformations - drug therapy
Intracranial Arteriovenous Malformations - enzymology
Kinases
Molecular Dynamics Simulation
Peptides
Peptides - chemistry
Protein Binding
Protein Conformation, alpha-Helical
Protein Interaction Domains and Motifs
Protein Kinase Inhibitors - chemistry
Protein Multimerization
rho-Associated Kinases - chemistry
Rho-kinase
self-inhibitory peptide
Thermodynamics
title Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20Self-inhibitory%20Helical%20Peptides%20to%20Target%20Rho-kinase%20Dimerization%20in%20Cerebrovascular%20Malformation:%20Structural%20Bioinformatics%20Analysis%20and%20Peptide%20Binding%20Assay&rft.jtitle=Molecular%20informatics&rft.au=Wang,%20Xuyang&rft.date=2016-07&rft.volume=35&rft.issue=6-7&rft.spage=262&rft.epage=267&rft.pages=262-267&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201501022&rft_dat=%3Cproquest_cross%3E1811898189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805222095&rft_id=info:pmid/27492240&rfr_iscdi=true