Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay
Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in sil...
Gespeichert in:
Veröffentlicht in: | Molecular informatics 2016-07, Vol.35 (6-7), p.262-267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 267 |
---|---|
container_issue | 6-7 |
container_start_page | 262 |
container_title | Molecular informatics |
container_volume | 35 |
creator | Wang, Xuyang Hou, Dianqi Dai, Weiwei Gao, Wenwei Ju, Shiming Cao, Heli Zhang, Lin Wang, Gan Guo, Yan Chen, Shiwen Tian, Hengli Li, Zhiqiang |
description | Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM. |
doi_str_mv | 10.1002/minf.201501022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811898189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811898189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEolXplSOyxIVLFtuJE4fbdku7lbYLokVFXCzHGbduE3uxk0J4KJ4Rt2lXiAtYsmxpvvlGoz9JXhI8IxjTt52xekYxYZhgSp8ku4QXPCUlI0-3_zzbSfZDuMbxZLQoefU82aFlXlGa493k1yF4cyt74yxyGp1Bq1Njr0xteudHtITWKNmij7DpTQMB9Q6dS38JPfp05dIbY2UAdGi6aPk5WYxFC_BQe3crgxpa6dGpbLXz3X39HTrr_aD6wUftgXFxhamkAppb2Y7BBCRt8zgyMrYx9hLNQ5Dji-SZlm2A_Yd3L_l89P58sUxXH45PFvNVqnJOaKpKTCXPoKQEONa1piRjimhZ1TgDQmVdasCUZwUuKM_zHMuccYwhZ5qpssn2kjeTd-PdtwFCLzoTFLSttOCGIAgnhFc83v9AcVXgkhU8oq__Qq_d4OPS9xSjlOKKRWo2Ucq7EDxosfGmk34UBIu73MVd7mKbe2x49aAd6g6aLf6YcgSqCfhuWhj_oROnJ-ujP-Xp1GtCDz-2vdLfiKLMSiYu1sfi68EFXy-_cLHKfgNF98ql</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1805222095</pqid></control><display><type>article</type><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</creator><creatorcontrib>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</creatorcontrib><description>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</description><identifier>ISSN: 1868-1743</identifier><identifier>EISSN: 1868-1751</identifier><identifier>DOI: 10.1002/minf.201501022</identifier><identifier>PMID: 27492240</identifier><language>eng</language><publisher>Germany: Blackwell Publishing Ltd</publisher><subject>Bioinformatics ; cerebrovascular malformation ; Crystal structure ; dimerization ; Drug Evaluation, Preclinical ; Fluorescence Polarization ; Intracranial Arteriovenous Malformations - drug therapy ; Intracranial Arteriovenous Malformations - enzymology ; Kinases ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Interaction Domains and Motifs ; Protein Kinase Inhibitors - chemistry ; Protein Multimerization ; rho-Associated Kinases - chemistry ; Rho-kinase ; self-inhibitory peptide ; Thermodynamics</subject><ispartof>Molecular informatics, 2016-07, Vol.35 (6-7), p.262-267</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</citedby><cites>FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fminf.201501022$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fminf.201501022$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27492240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Xuyang</creatorcontrib><creatorcontrib>Hou, Dianqi</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Gao, Wenwei</creatorcontrib><creatorcontrib>Ju, Shiming</creatorcontrib><creatorcontrib>Cao, Heli</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Gan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Chen, Shiwen</creatorcontrib><creatorcontrib>Tian, Hengli</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><title>Molecular informatics</title><addtitle>Mol. Inf</addtitle><description>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</description><subject>Bioinformatics</subject><subject>cerebrovascular malformation</subject><subject>Crystal structure</subject><subject>dimerization</subject><subject>Drug Evaluation, Preclinical</subject><subject>Fluorescence Polarization</subject><subject>Intracranial Arteriovenous Malformations - drug therapy</subject><subject>Intracranial Arteriovenous Malformations - enzymology</subject><subject>Kinases</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Protein Kinase Inhibitors - chemistry</subject><subject>Protein Multimerization</subject><subject>rho-Associated Kinases - chemistry</subject><subject>Rho-kinase</subject><subject>self-inhibitory peptide</subject><subject>Thermodynamics</subject><issn>1868-1743</issn><issn>1868-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhiMEolXplSOyxIVLFtuJE4fbdku7lbYLokVFXCzHGbduE3uxk0J4KJ4Rt2lXiAtYsmxpvvlGoz9JXhI8IxjTt52xekYxYZhgSp8ku4QXPCUlI0-3_zzbSfZDuMbxZLQoefU82aFlXlGa493k1yF4cyt74yxyGp1Bq1Njr0xteudHtITWKNmij7DpTQMB9Q6dS38JPfp05dIbY2UAdGi6aPk5WYxFC_BQe3crgxpa6dGpbLXz3X39HTrr_aD6wUftgXFxhamkAppb2Y7BBCRt8zgyMrYx9hLNQ5Dji-SZlm2A_Yd3L_l89P58sUxXH45PFvNVqnJOaKpKTCXPoKQEONa1piRjimhZ1TgDQmVdasCUZwUuKM_zHMuccYwhZ5qpssn2kjeTd-PdtwFCLzoTFLSttOCGIAgnhFc83v9AcVXgkhU8oq__Qq_d4OPS9xSjlOKKRWo2Ucq7EDxosfGmk34UBIu73MVd7mKbe2x49aAd6g6aLf6YcgSqCfhuWhj_oROnJ-ujP-Xp1GtCDz-2vdLfiKLMSiYu1sfi68EFXy-_cLHKfgNF98ql</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Wang, Xuyang</creator><creator>Hou, Dianqi</creator><creator>Dai, Weiwei</creator><creator>Gao, Wenwei</creator><creator>Ju, Shiming</creator><creator>Cao, Heli</creator><creator>Zhang, Lin</creator><creator>Wang, Gan</creator><creator>Guo, Yan</creator><creator>Chen, Shiwen</creator><creator>Tian, Hengli</creator><creator>Li, Zhiqiang</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</title><author>Wang, Xuyang ; Hou, Dianqi ; Dai, Weiwei ; Gao, Wenwei ; Ju, Shiming ; Cao, Heli ; Zhang, Lin ; Wang, Gan ; Guo, Yan ; Chen, Shiwen ; Tian, Hengli ; Li, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4812-c702a83e721e80fbf2135c1fa9b03e12ab7fe0283606284440a45800e45f5c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioinformatics</topic><topic>cerebrovascular malformation</topic><topic>Crystal structure</topic><topic>dimerization</topic><topic>Drug Evaluation, Preclinical</topic><topic>Fluorescence Polarization</topic><topic>Intracranial Arteriovenous Malformations - drug therapy</topic><topic>Intracranial Arteriovenous Malformations - enzymology</topic><topic>Kinases</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Protein Kinase Inhibitors - chemistry</topic><topic>Protein Multimerization</topic><topic>rho-Associated Kinases - chemistry</topic><topic>Rho-kinase</topic><topic>self-inhibitory peptide</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuyang</creatorcontrib><creatorcontrib>Hou, Dianqi</creatorcontrib><creatorcontrib>Dai, Weiwei</creatorcontrib><creatorcontrib>Gao, Wenwei</creatorcontrib><creatorcontrib>Ju, Shiming</creatorcontrib><creatorcontrib>Cao, Heli</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Wang, Gan</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Chen, Shiwen</creatorcontrib><creatorcontrib>Tian, Hengli</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuyang</au><au>Hou, Dianqi</au><au>Dai, Weiwei</au><au>Gao, Wenwei</au><au>Ju, Shiming</au><au>Cao, Heli</au><au>Zhang, Lin</au><au>Wang, Gan</au><au>Guo, Yan</au><au>Chen, Shiwen</au><au>Tian, Hengli</au><au>Li, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay</atitle><jtitle>Molecular informatics</jtitle><addtitle>Mol. Inf</addtitle><date>2016-07</date><risdate>2016</risdate><volume>35</volume><issue>6-7</issue><spage>262</spage><epage>267</epage><pages>262-267</pages><issn>1868-1743</issn><eissn>1868-1751</eissn><abstract>Rho‐kinase dimerization is essential for its kinase activity and biological function; disruption of the dimerization has recently been established as a new and promising therapeutics strategy for cerebrovascular malformation (CM). Based on Rho‐kinase dimer crystal structure we herein combined in silico analysis and in vitro assay to rationally derive self‐inhibitory peptides from the dimerization interface. Three peptides namely Hlp1, Hlp2 and Hlp3 were successfully designed that have potential capability to rebind at the dimerization domain of Rho‐kinase. Molecular dynamics (MD) simulations revealed that these peptides are helically structured when bound to Rho‐kinase, but exhibit partially intrinsic disorder in unbound state. Binding free energy (BFE) analysis suggested that the peptides have a satisfactory energetic profile to interact with Rho‐kinase. The computational findings were then substantiated by fluorescence anisotropy assays, conforming that the helical peptides can bind tightly to Rho‐kinase with affinity KD at micromolar level. These designed peptides are considered as lead molecular entities that can be further modified and optimized to obtain more potent peptidomimetics as self‐competitors to disrupt Rho‐kinase dimerization in CM.</abstract><cop>Germany</cop><pub>Blackwell Publishing Ltd</pub><pmid>27492240</pmid><doi>10.1002/minf.201501022</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-1743 |
ispartof | Molecular informatics, 2016-07, Vol.35 (6-7), p.262-267 |
issn | 1868-1743 1868-1751 |
language | eng |
recordid | cdi_proquest_miscellaneous_1811898189 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Bioinformatics cerebrovascular malformation Crystal structure dimerization Drug Evaluation, Preclinical Fluorescence Polarization Intracranial Arteriovenous Malformations - drug therapy Intracranial Arteriovenous Malformations - enzymology Kinases Molecular Dynamics Simulation Peptides Peptides - chemistry Protein Binding Protein Conformation, alpha-Helical Protein Interaction Domains and Motifs Protein Kinase Inhibitors - chemistry Protein Multimerization rho-Associated Kinases - chemistry Rho-kinase self-inhibitory peptide Thermodynamics |
title | Derivation of Self-inhibitory Helical Peptides to Target Rho-kinase Dimerization in Cerebrovascular Malformation: Structural Bioinformatics Analysis and Peptide Binding Assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20Self-inhibitory%20Helical%20Peptides%20to%20Target%20Rho-kinase%20Dimerization%20in%20Cerebrovascular%20Malformation:%20Structural%20Bioinformatics%20Analysis%20and%20Peptide%20Binding%20Assay&rft.jtitle=Molecular%20informatics&rft.au=Wang,%20Xuyang&rft.date=2016-07&rft.volume=35&rft.issue=6-7&rft.spage=262&rft.epage=267&rft.pages=262-267&rft.issn=1868-1743&rft.eissn=1868-1751&rft_id=info:doi/10.1002/minf.201501022&rft_dat=%3Cproquest_cross%3E1811898189%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1805222095&rft_id=info:pmid/27492240&rfr_iscdi=true |