Making the Most of Multiple Measures: Disentangling the Effects of Different Dimensions of Race in Survey Research

The majority of social science research uses a single measure of race when investigating racial inequality. However, a growing body of work demonstrates that race shapes the life chances of individuals in multiple ways, related not only to how people self-identify but also to how others perceive the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American behavioral scientist (Beverly Hills) 2016-04, Vol.60 (4), p.519-537
Hauptverfasser: Saperstein, Aliya, Kizer, Jessica M., Penner, Andrew M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 4
container_start_page 519
container_title The American behavioral scientist (Beverly Hills)
container_volume 60
creator Saperstein, Aliya
Kizer, Jessica M.
Penner, Andrew M.
description The majority of social science research uses a single measure of race when investigating racial inequality. However, a growing body of work demonstrates that race shapes the life chances of individuals in multiple ways, related not only to how people self-identify but also to how others perceive them. As multiple measures of race are increasingly collected and used in survey research, it becomes important to consider the best methods of leveraging such data. We present four analytical approaches for incorporating two different dimensions of race in the same study and illustrate their use with data from the U.S. National Longitudinal Study of Adolescent to Adult Health. The approaches range from tests of specific hypotheses to the most exploratory description of how different measures of race relate to social inequality. Although each approach has its strengths and weaknesses, by accounting for the multidimensionality of race, they all allow for more nuanced patterns of advantage and disadvantage than standard single-measure methods.
doi_str_mv 10.1177/0002764215613399
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811845850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0002764215613399</sage_id><sourcerecordid>3986106961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e32f1ff7e5d12f82c282c13dcd452c44a3311429e79ea56e1a0b84d84d9d49333</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMoWFfvHgt68BLN5KNtjrK4KmzxoucQ28natduuSXvw35tSD7IgzDDMzPMOw0vIJbBbgDy_Y4zxPJMcVAZCaH1EElCKUyEKOCbJtKbT_pSchbCNLcsVT8h1aT-bbpMOH5iWfRjS3qXl2A7Nvo0DtGH0GM7JibNtwIvfuiBvq4fX5RNdvzw-L-_XtOJaDRQFd-BcjqoG7gpe8Zgg6qqWildSWiEAJNeYa7QqQ7DsvZB1DF1LLYRYkJv57t73XyOGweyaUGHb2g77MRgoAAqpCsUienWAbvvRd_E7E90QSjIOE8VmqvJ9CB6d2ftmZ_23AWYm28yhbVFCZ0mwG_xz9D_-B-Y0aOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773540210</pqid></control><display><type>article</type><title>Making the Most of Multiple Measures: Disentangling the Effects of Different Dimensions of Race in Survey Research</title><source>Worldwide Political Science Abstracts</source><source>SAGE Complete</source><source>Alma/SFX Local Collection</source><source>Sociological Abstracts</source><creator>Saperstein, Aliya ; Kizer, Jessica M. ; Penner, Andrew M.</creator><creatorcontrib>Saperstein, Aliya ; Kizer, Jessica M. ; Penner, Andrew M.</creatorcontrib><description>The majority of social science research uses a single measure of race when investigating racial inequality. However, a growing body of work demonstrates that race shapes the life chances of individuals in multiple ways, related not only to how people self-identify but also to how others perceive them. As multiple measures of race are increasingly collected and used in survey research, it becomes important to consider the best methods of leveraging such data. We present four analytical approaches for incorporating two different dimensions of race in the same study and illustrate their use with data from the U.S. National Longitudinal Study of Adolescent to Adult Health. The approaches range from tests of specific hypotheses to the most exploratory description of how different measures of race relate to social inequality. Although each approach has its strengths and weaknesses, by accounting for the multidimensionality of race, they all allow for more nuanced patterns of advantage and disadvantage than standard single-measure methods.</description><identifier>ISSN: 0002-7642</identifier><identifier>EISSN: 1552-3381</identifier><identifier>DOI: 10.1177/0002764215613399</identifier><identifier>CODEN: ABHSAU</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Accounting ; Data analysis ; Data collection ; Hypothesis testing ; Inequality ; Longitudinal studies ; Measurement ; Polls &amp; surveys ; Race ; Racism ; Research methodology ; Social inequality ; Social research ; Studies ; United States</subject><ispartof>The American behavioral scientist (Beverly Hills), 2016-04, Vol.60 (4), p.519-537</ispartof><rights>2015 SAGE Publications</rights><rights>Copyright SAGE PUBLICATIONS, INC. Apr 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c295t-e32f1ff7e5d12f82c282c13dcd452c44a3311429e79ea56e1a0b84d84d9d49333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0002764215613399$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0002764215613399$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,33751,43597,43598</link.rule.ids></links><search><creatorcontrib>Saperstein, Aliya</creatorcontrib><creatorcontrib>Kizer, Jessica M.</creatorcontrib><creatorcontrib>Penner, Andrew M.</creatorcontrib><title>Making the Most of Multiple Measures: Disentangling the Effects of Different Dimensions of Race in Survey Research</title><title>The American behavioral scientist (Beverly Hills)</title><description>The majority of social science research uses a single measure of race when investigating racial inequality. However, a growing body of work demonstrates that race shapes the life chances of individuals in multiple ways, related not only to how people self-identify but also to how others perceive them. As multiple measures of race are increasingly collected and used in survey research, it becomes important to consider the best methods of leveraging such data. We present four analytical approaches for incorporating two different dimensions of race in the same study and illustrate their use with data from the U.S. National Longitudinal Study of Adolescent to Adult Health. The approaches range from tests of specific hypotheses to the most exploratory description of how different measures of race relate to social inequality. Although each approach has its strengths and weaknesses, by accounting for the multidimensionality of race, they all allow for more nuanced patterns of advantage and disadvantage than standard single-measure methods.</description><subject>Accounting</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Hypothesis testing</subject><subject>Inequality</subject><subject>Longitudinal studies</subject><subject>Measurement</subject><subject>Polls &amp; surveys</subject><subject>Race</subject><subject>Racism</subject><subject>Research methodology</subject><subject>Social inequality</subject><subject>Social research</subject><subject>Studies</subject><subject>United States</subject><issn>0002-7642</issn><issn>1552-3381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><sourceid>BHHNA</sourceid><recordid>eNp1kE1LxDAQhoMoWFfvHgt68BLN5KNtjrK4KmzxoucQ28natduuSXvw35tSD7IgzDDMzPMOw0vIJbBbgDy_Y4zxPJMcVAZCaH1EElCKUyEKOCbJtKbT_pSchbCNLcsVT8h1aT-bbpMOH5iWfRjS3qXl2A7Nvo0DtGH0GM7JibNtwIvfuiBvq4fX5RNdvzw-L-_XtOJaDRQFd-BcjqoG7gpe8Zgg6qqWildSWiEAJNeYa7QqQ7DsvZB1DF1LLYRYkJv57t73XyOGweyaUGHb2g77MRgoAAqpCsUienWAbvvRd_E7E90QSjIOE8VmqvJ9CB6d2ftmZ_23AWYm28yhbVFCZ0mwG_xz9D_-B-Y0aOI</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Saperstein, Aliya</creator><creator>Kizer, Jessica M.</creator><creator>Penner, Andrew M.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>7UB</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope></search><sort><creationdate>201604</creationdate><title>Making the Most of Multiple Measures</title><author>Saperstein, Aliya ; Kizer, Jessica M. ; Penner, Andrew M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e32f1ff7e5d12f82c282c13dcd452c44a3311429e79ea56e1a0b84d84d9d49333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accounting</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Hypothesis testing</topic><topic>Inequality</topic><topic>Longitudinal studies</topic><topic>Measurement</topic><topic>Polls &amp; surveys</topic><topic>Race</topic><topic>Racism</topic><topic>Research methodology</topic><topic>Social inequality</topic><topic>Social research</topic><topic>Studies</topic><topic>United States</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saperstein, Aliya</creatorcontrib><creatorcontrib>Kizer, Jessica M.</creatorcontrib><creatorcontrib>Penner, Andrew M.</creatorcontrib><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>The American behavioral scientist (Beverly Hills)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saperstein, Aliya</au><au>Kizer, Jessica M.</au><au>Penner, Andrew M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Making the Most of Multiple Measures: Disentangling the Effects of Different Dimensions of Race in Survey Research</atitle><jtitle>The American behavioral scientist (Beverly Hills)</jtitle><date>2016-04</date><risdate>2016</risdate><volume>60</volume><issue>4</issue><spage>519</spage><epage>537</epage><pages>519-537</pages><issn>0002-7642</issn><eissn>1552-3381</eissn><coden>ABHSAU</coden><abstract>The majority of social science research uses a single measure of race when investigating racial inequality. However, a growing body of work demonstrates that race shapes the life chances of individuals in multiple ways, related not only to how people self-identify but also to how others perceive them. As multiple measures of race are increasingly collected and used in survey research, it becomes important to consider the best methods of leveraging such data. We present four analytical approaches for incorporating two different dimensions of race in the same study and illustrate their use with data from the U.S. National Longitudinal Study of Adolescent to Adult Health. The approaches range from tests of specific hypotheses to the most exploratory description of how different measures of race relate to social inequality. Although each approach has its strengths and weaknesses, by accounting for the multidimensionality of race, they all allow for more nuanced patterns of advantage and disadvantage than standard single-measure methods.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1177/0002764215613399</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7642
ispartof The American behavioral scientist (Beverly Hills), 2016-04, Vol.60 (4), p.519-537
issn 0002-7642
1552-3381
language eng
recordid cdi_proquest_miscellaneous_1811845850
source Worldwide Political Science Abstracts; SAGE Complete; Alma/SFX Local Collection; Sociological Abstracts
subjects Accounting
Data analysis
Data collection
Hypothesis testing
Inequality
Longitudinal studies
Measurement
Polls & surveys
Race
Racism
Research methodology
Social inequality
Social research
Studies
United States
title Making the Most of Multiple Measures: Disentangling the Effects of Different Dimensions of Race in Survey Research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Making%20the%20Most%20of%20Multiple%20Measures:%20Disentangling%20the%20Effects%20of%20Different%20Dimensions%20of%20Race%20in%20Survey%20Research&rft.jtitle=The%20American%20behavioral%20scientist%20(Beverly%20Hills)&rft.au=Saperstein,%20Aliya&rft.date=2016-04&rft.volume=60&rft.issue=4&rft.spage=519&rft.epage=537&rft.pages=519-537&rft.issn=0002-7642&rft.eissn=1552-3381&rft.coden=ABHSAU&rft_id=info:doi/10.1177/0002764215613399&rft_dat=%3Cproquest_cross%3E3986106961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773540210&rft_id=info:pmid/&rft_sage_id=10.1177_0002764215613399&rfr_iscdi=true