Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models
The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known that the conditi...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2016-04, Vol.35 (3), p.189-205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 3 |
container_start_page | 189 |
container_title | Journal of forecasting |
container_volume | 35 |
creator | Møller, Jan Kloppenborg Zugno, Marco Madsen, Henrik |
description | The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic‐type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state‐dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non‐parametric modelling to explore conditional correlation structures, and skewness of the predictive distributions as a function of explanatory variables. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/for.2367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811845678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1811845678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6027-8ae35f767c6c0d0db6a4803fe00582529514edfaa16e77b0fb2bea3f0a456e0d3</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYP8CcsePGydZJ0k92j1rYqfuEHFT2E7O4Eo-umTbbU_ntXK4qCpznMMy_DS8gOhS4FYPvG-S7jQq6QDoUsiymn96ukA0zKWIiMr5ONEJ4BQKaUdcjjlXe5zm1lQ2OLaOg8Fjo0IXImGtu6jK7cHH00whq9bqyro3wR3TSueNKfB0fWGPRYN1ZX0WA6W5pzV2IVtsia0VXA7a-5Se6Gg9v-cXx2OTrpH5zFhWjfilONPDFSyEIUUEKZC91LgRsESFKWsCyhPSyN1lSglDmYnOWouQHdSwRCyTfJ3jJ34t10hqFRrzYUWFW6RjcLiqaUpq2VaUt3_9BnN_N1-52iUlLWo1nKfgIL70LwaNTE21ftF4qC-mhZtS2rj5ZbGi_p3Fa4-Nep4eX1b9_2jW_fXvsX1W5losYXI3V4wTjlD0yd8ndew40E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771241982</pqid></control><display><type>article</type><title>Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Møller, Jan Kloppenborg ; Zugno, Marco ; Madsen, Henrik</creator><creatorcontrib>Møller, Jan Kloppenborg ; Zugno, Marco ; Madsen, Henrik</creatorcontrib><description>The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic‐type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state‐dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non‐parametric modelling to explore conditional correlation structures, and skewness of the predictive distributions as a function of explanatory variables. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6693</identifier><identifier>EISSN: 1099-131X</identifier><identifier>DOI: 10.1002/for.2367</identifier><identifier>CODEN: JOFODV</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Economic models ; non-linear forecasting ; probabilistic forecasting ; state space models ; stochastic differential equations ; Stochastic models ; Wind power ; Wind shear</subject><ispartof>Journal of forecasting, 2016-04, Vol.35 (3), p.189-205</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6027-8ae35f767c6c0d0db6a4803fe00582529514edfaa16e77b0fb2bea3f0a456e0d3</citedby><cites>FETCH-LOGICAL-c6027-8ae35f767c6c0d0db6a4803fe00582529514edfaa16e77b0fb2bea3f0a456e0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffor.2367$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffor.2367$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Møller, Jan Kloppenborg</creatorcontrib><creatorcontrib>Zugno, Marco</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><title>Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models</title><title>Journal of forecasting</title><addtitle>J. Forecast</addtitle><description>The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic‐type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state‐dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non‐parametric modelling to explore conditional correlation structures, and skewness of the predictive distributions as a function of explanatory variables. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Economic models</subject><subject>non-linear forecasting</subject><subject>probabilistic forecasting</subject><subject>state space models</subject><subject>stochastic differential equations</subject><subject>Stochastic models</subject><subject>Wind power</subject><subject>Wind shear</subject><issn>0277-6693</issn><issn>1099-131X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYP8CcsePGydZJ0k92j1rYqfuEHFT2E7O4Eo-umTbbU_ntXK4qCpznMMy_DS8gOhS4FYPvG-S7jQq6QDoUsiymn96ukA0zKWIiMr5ONEJ4BQKaUdcjjlXe5zm1lQ2OLaOg8Fjo0IXImGtu6jK7cHH00whq9bqyro3wR3TSueNKfB0fWGPRYN1ZX0WA6W5pzV2IVtsia0VXA7a-5Se6Gg9v-cXx2OTrpH5zFhWjfilONPDFSyEIUUEKZC91LgRsESFKWsCyhPSyN1lSglDmYnOWouQHdSwRCyTfJ3jJ34t10hqFRrzYUWFW6RjcLiqaUpq2VaUt3_9BnN_N1-52iUlLWo1nKfgIL70LwaNTE21ftF4qC-mhZtS2rj5ZbGi_p3Fa4-Nep4eX1b9_2jW_fXvsX1W5losYXI3V4wTjlD0yd8ndew40E</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Møller, Jan Kloppenborg</creator><creator>Zugno, Marco</creator><creator>Madsen, Henrik</creator><general>Blackwell Publishing Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>201604</creationdate><title>Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models</title><author>Møller, Jan Kloppenborg ; Zugno, Marco ; Madsen, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6027-8ae35f767c6c0d0db6a4803fe00582529514edfaa16e77b0fb2bea3f0a456e0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Economic models</topic><topic>non-linear forecasting</topic><topic>probabilistic forecasting</topic><topic>state space models</topic><topic>stochastic differential equations</topic><topic>Stochastic models</topic><topic>Wind power</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Møller, Jan Kloppenborg</creatorcontrib><creatorcontrib>Zugno, Marco</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Møller, Jan Kloppenborg</au><au>Zugno, Marco</au><au>Madsen, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models</atitle><jtitle>Journal of forecasting</jtitle><addtitle>J. Forecast</addtitle><date>2016-04</date><risdate>2016</risdate><volume>35</volume><issue>3</issue><spage>189</spage><epage>205</epage><pages>189-205</pages><issn>0277-6693</issn><eissn>1099-131X</eissn><coden>JOFODV</coden><abstract>The increasing penetration of wind power has resulted in larger shares of volatile sources of supply in power systems worldwide. In order to operate such systems efficiently, methods for reliable probabilistic forecasts of future wind power production are essential. It is well known that the conditional density of wind power production is highly dependent on the level of predicted wind power and prediction horizon. This paper describes a new approach for wind power forecasting based on logistic‐type stochastic differential equations (SDEs). The SDE formulation allows us to calculate both state‐dependent conditional uncertainties as well as correlation structures. Model estimation is performed by maximizing the likelihood of a multidimensional random vector while accounting for the correlation structure defined by the SDE formulation. We use non‐parametric modelling to explore conditional correlation structures, and skewness of the predictive distributions as a function of explanatory variables. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/for.2367</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6693 |
ispartof | Journal of forecasting, 2016-04, Vol.35 (3), p.189-205 |
issn | 0277-6693 1099-131X |
language | eng |
recordid | cdi_proquest_miscellaneous_1811845678 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Economic models non-linear forecasting probabilistic forecasting state space models stochastic differential equations Stochastic models Wind power Wind shear |
title | Probabilistic Forecasts of Wind Power Generation by Stochastic Differential Equation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Forecasts%20of%20Wind%20Power%20Generation%20by%20Stochastic%20Differential%20Equation%20Models&rft.jtitle=Journal%20of%20forecasting&rft.au=M%C3%B8ller,%20Jan%20Kloppenborg&rft.date=2016-04&rft.volume=35&rft.issue=3&rft.spage=189&rft.epage=205&rft.pages=189-205&rft.issn=0277-6693&rft.eissn=1099-131X&rft.coden=JOFODV&rft_id=info:doi/10.1002/for.2367&rft_dat=%3Cproquest_cross%3E1811845678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771241982&rft_id=info:pmid/&rfr_iscdi=true |