Lower bound for electron core beta in the solar wind

Solar wind electrons, especially under conditions of relatively low speed flow, often can be represented as two bi‐Maxwellian components, a cooler, more dense core (denoted by the subscript c) and a hotter, more tenuous halo. Solar wind observations from Ulysses between 1.5 and 2 AU further indicate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 1998-07, Vol.103 (A7), p.14559-14566
Hauptverfasser: Gary, S. Peter, Newbury, Jennifer A., Goldstein, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14566
container_issue A7
container_start_page 14559
container_title Journal of Geophysical Research
container_volume 103
creator Gary, S. Peter
Newbury, Jennifer A.
Goldstein, Bruce E.
description Solar wind electrons, especially under conditions of relatively low speed flow, often can be represented as two bi‐Maxwellian components, a cooler, more dense core (denoted by the subscript c) and a hotter, more tenuous halo. Solar wind observations from Ulysses between 1.5 and 2 AU further indicate that the β for electron core temperatures parallel to the background magnetic field, β‖c, has a distinct lower bound near 0.1. To seek the cause of this possible constraint, numerical solutions of the full Vlasov linear dispersion equation are used for four heat flux instabilities under a core/halo model with parameters representative of the solar wind near 1 AU. In this model the whistler heat flux instability is the growing mode of lowest threshold at most observed values of β‖c. As β‖c is decreased, however, the growth of this mode is reduced, so that at sufficiently small values of this parameter the Alfvén heat flux instability or the electron/ion acoustic instability becomes the fastest growing mode. The critical condition corresponding to this transition is calculated as a function of T‖c/Tp (where Tp is the proton temperature) and approximately corresponds to the observed constraint at β‖c ≃ 0.1. The Alfvén and ion acoustic instabilities both resonate with core electrons; the hypothesis is proposed that core heating by these two modes at the critical condition establishes a lower bound on β‖c.
doi_str_mv 10.1029/98JA01172
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_18118112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18118112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3595-64e942bff4d3319ca5e19c008d4c3815040c00dd3cd3abf19edad3593f1430013</originalsourceid><addsrcrecordid>eNp1kM1KAzEURoMoWNSFbxBBBBejufmZziyLaFWqQlF0F9LkDkbHiSZTqm9vykh3hpBw4ZyPy0fIIbAzYLw-r6vbCQMY8y0y4qDKgnPGt8mIgawKxvl4lxyk9MbykaqUDEZEzsIKI12EZedoEyLFFm0fQ0dtiEgX2BvqO9q_Ik2hNZGufOf2yU5j2oQHf_8eebq6fLy4LmYP05uLyaywQtWqKCXWki-aRjohoLZGYX4Zq5y0ogLFJMuTc8I6YRYN1OiMy6ZoQArGQOyRoyE3pN7rZH2P9tWGrssr6lKVgteZORmYzxi-lph6_eGTxbY1HYZl0lDB-vIMng6gjSGliI3-jP7DxB8NTK_r05v6Mnv8F2qSNW0TTWd92ghcSMgdZowN2Mq3-PN_nr6dzicgoVRZKQbFpx6_N4qJ77oci7HSz_dTfTedvzxfv-RB_AL9b4ko</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18118112</pqid></control><display><type>article</type><title>Lower bound for electron core beta in the solar wind</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Gary, S. Peter ; Newbury, Jennifer A. ; Goldstein, Bruce E.</creator><creatorcontrib>Gary, S. Peter ; Newbury, Jennifer A. ; Goldstein, Bruce E.</creatorcontrib><description>Solar wind electrons, especially under conditions of relatively low speed flow, often can be represented as two bi‐Maxwellian components, a cooler, more dense core (denoted by the subscript c) and a hotter, more tenuous halo. Solar wind observations from Ulysses between 1.5 and 2 AU further indicate that the β for electron core temperatures parallel to the background magnetic field, β‖c, has a distinct lower bound near 0.1. To seek the cause of this possible constraint, numerical solutions of the full Vlasov linear dispersion equation are used for four heat flux instabilities under a core/halo model with parameters representative of the solar wind near 1 AU. In this model the whistler heat flux instability is the growing mode of lowest threshold at most observed values of β‖c. As β‖c is decreased, however, the growth of this mode is reduced, so that at sufficiently small values of this parameter the Alfvén heat flux instability or the electron/ion acoustic instability becomes the fastest growing mode. The critical condition corresponding to this transition is calculated as a function of T‖c/Tp (where Tp is the proton temperature) and approximately corresponds to the observed constraint at β‖c ≃ 0.1. The Alfvén and ion acoustic instabilities both resonate with core electrons; the hypothesis is proposed that core heating by these two modes at the critical condition establishes a lower bound on β‖c.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/98JA01172</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>70 PLASMA PHYSICS AND FUSION ; Astronomy ; BOLTZMANN-VLASOV EQUATION ; Earth, ocean, space ; Exact sciences and technology ; HEAT FLUX ; INSTABILITY GROWTH RATES ; Interplanetary space ; ION ACOUSTIC WAVES ; PHYSICS ; PLASMA INSTABILITY ; PROTON TEMPERATURE ; Solar system ; SOLAR WIND ; Solar wind plasma ; WHISTLER INSTABILITY</subject><ispartof>Journal of Geophysical Research, 1998-07, Vol.103 (A7), p.14559-14566</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3595-64e942bff4d3319ca5e19c008d4c3815040c00dd3cd3abf19edad3593f1430013</citedby><cites>FETCH-LOGICAL-c3595-64e942bff4d3319ca5e19c008d4c3815040c00dd3cd3abf19edad3593f1430013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F98JA01172$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F98JA01172$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2341000$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/656329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gary, S. Peter</creatorcontrib><creatorcontrib>Newbury, Jennifer A.</creatorcontrib><creatorcontrib>Goldstein, Bruce E.</creatorcontrib><title>Lower bound for electron core beta in the solar wind</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Solar wind electrons, especially under conditions of relatively low speed flow, often can be represented as two bi‐Maxwellian components, a cooler, more dense core (denoted by the subscript c) and a hotter, more tenuous halo. Solar wind observations from Ulysses between 1.5 and 2 AU further indicate that the β for electron core temperatures parallel to the background magnetic field, β‖c, has a distinct lower bound near 0.1. To seek the cause of this possible constraint, numerical solutions of the full Vlasov linear dispersion equation are used for four heat flux instabilities under a core/halo model with parameters representative of the solar wind near 1 AU. In this model the whistler heat flux instability is the growing mode of lowest threshold at most observed values of β‖c. As β‖c is decreased, however, the growth of this mode is reduced, so that at sufficiently small values of this parameter the Alfvén heat flux instability or the electron/ion acoustic instability becomes the fastest growing mode. The critical condition corresponding to this transition is calculated as a function of T‖c/Tp (where Tp is the proton temperature) and approximately corresponds to the observed constraint at β‖c ≃ 0.1. The Alfvén and ion acoustic instabilities both resonate with core electrons; the hypothesis is proposed that core heating by these two modes at the critical condition establishes a lower bound on β‖c.</description><subject>70 PLASMA PHYSICS AND FUSION</subject><subject>Astronomy</subject><subject>BOLTZMANN-VLASOV EQUATION</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>HEAT FLUX</subject><subject>INSTABILITY GROWTH RATES</subject><subject>Interplanetary space</subject><subject>ION ACOUSTIC WAVES</subject><subject>PHYSICS</subject><subject>PLASMA INSTABILITY</subject><subject>PROTON TEMPERATURE</subject><subject>Solar system</subject><subject>SOLAR WIND</subject><subject>Solar wind plasma</subject><subject>WHISTLER INSTABILITY</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEURoMoWNSFbxBBBBejufmZziyLaFWqQlF0F9LkDkbHiSZTqm9vykh3hpBw4ZyPy0fIIbAzYLw-r6vbCQMY8y0y4qDKgnPGt8mIgawKxvl4lxyk9MbykaqUDEZEzsIKI12EZedoEyLFFm0fQ0dtiEgX2BvqO9q_Ik2hNZGufOf2yU5j2oQHf_8eebq6fLy4LmYP05uLyaywQtWqKCXWki-aRjohoLZGYX4Zq5y0ogLFJMuTc8I6YRYN1OiMy6ZoQArGQOyRoyE3pN7rZH2P9tWGrssr6lKVgteZORmYzxi-lph6_eGTxbY1HYZl0lDB-vIMng6gjSGliI3-jP7DxB8NTK_r05v6Mnv8F2qSNW0TTWd92ghcSMgdZowN2Mq3-PN_nr6dzicgoVRZKQbFpx6_N4qJ77oci7HSz_dTfTedvzxfv-RB_AL9b4ko</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Gary, S. Peter</creator><creator>Newbury, Jennifer A.</creator><creator>Goldstein, Bruce E.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>19980701</creationdate><title>Lower bound for electron core beta in the solar wind</title><author>Gary, S. Peter ; Newbury, Jennifer A. ; Goldstein, Bruce E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3595-64e942bff4d3319ca5e19c008d4c3815040c00dd3cd3abf19edad3593f1430013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>70 PLASMA PHYSICS AND FUSION</topic><topic>Astronomy</topic><topic>BOLTZMANN-VLASOV EQUATION</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>HEAT FLUX</topic><topic>INSTABILITY GROWTH RATES</topic><topic>Interplanetary space</topic><topic>ION ACOUSTIC WAVES</topic><topic>PHYSICS</topic><topic>PLASMA INSTABILITY</topic><topic>PROTON TEMPERATURE</topic><topic>Solar system</topic><topic>SOLAR WIND</topic><topic>Solar wind plasma</topic><topic>WHISTLER INSTABILITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gary, S. Peter</creatorcontrib><creatorcontrib>Newbury, Jennifer A.</creatorcontrib><creatorcontrib>Goldstein, Bruce E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gary, S. Peter</au><au>Newbury, Jennifer A.</au><au>Goldstein, Bruce E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower bound for electron core beta in the solar wind</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-07-01</date><risdate>1998</risdate><volume>103</volume><issue>A7</issue><spage>14559</spage><epage>14566</epage><pages>14559-14566</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Solar wind electrons, especially under conditions of relatively low speed flow, often can be represented as two bi‐Maxwellian components, a cooler, more dense core (denoted by the subscript c) and a hotter, more tenuous halo. Solar wind observations from Ulysses between 1.5 and 2 AU further indicate that the β for electron core temperatures parallel to the background magnetic field, β‖c, has a distinct lower bound near 0.1. To seek the cause of this possible constraint, numerical solutions of the full Vlasov linear dispersion equation are used for four heat flux instabilities under a core/halo model with parameters representative of the solar wind near 1 AU. In this model the whistler heat flux instability is the growing mode of lowest threshold at most observed values of β‖c. As β‖c is decreased, however, the growth of this mode is reduced, so that at sufficiently small values of this parameter the Alfvén heat flux instability or the electron/ion acoustic instability becomes the fastest growing mode. The critical condition corresponding to this transition is calculated as a function of T‖c/Tp (where Tp is the proton temperature) and approximately corresponds to the observed constraint at β‖c ≃ 0.1. The Alfvén and ion acoustic instabilities both resonate with core electrons; the hypothesis is proposed that core heating by these two modes at the critical condition establishes a lower bound on β‖c.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/98JA01172</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 1998-07, Vol.103 (A7), p.14559-14566
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_18118112
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects 70 PLASMA PHYSICS AND FUSION
Astronomy
BOLTZMANN-VLASOV EQUATION
Earth, ocean, space
Exact sciences and technology
HEAT FLUX
INSTABILITY GROWTH RATES
Interplanetary space
ION ACOUSTIC WAVES
PHYSICS
PLASMA INSTABILITY
PROTON TEMPERATURE
Solar system
SOLAR WIND
Solar wind plasma
WHISTLER INSTABILITY
title Lower bound for electron core beta in the solar wind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20bound%20for%20electron%20core%20beta%20in%20the%20solar%20wind&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Gary,%20S.%20Peter&rft.date=1998-07-01&rft.volume=103&rft.issue=A7&rft.spage=14559&rft.epage=14566&rft.pages=14559-14566&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/98JA01172&rft_dat=%3Cproquest_osti_%3E18118112%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18118112&rft_id=info:pmid/&rfr_iscdi=true