Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model
Accurate quantification of the ozone-forming potential, termed “reactivity”, of voltaile organic compounds (VOCs) is critical for correctly assessing the impacts of emissions on air quality. As reactivity-based regulations are being more carefully considered for urban ozone control strate gies, the...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 1998-03, Vol.32 (5), p.694-703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | 5 |
container_start_page | 694 |
container_title | Environmental science & technology |
container_volume | 32 |
creator | Bergin, M. S Russell, A. G Milford, J. B |
description | Accurate quantification of the ozone-forming potential, termed “reactivity”, of voltaile organic compounds (VOCs) is critical for correctly assessing the impacts of emissions on air quality. As reactivity-based regulations are being more carefully considered for urban ozone control strate gies, the uncertainties in our ability to quantify reactivity are gaining importance. This study utilized a three-dimensional air quality model to examine the uncertainty in reactivity quantification resulting from a set of reaction rate constant uncertainties. A previous study identified the set of rate constants that were most critical for single-cell model ozone predictions. With the detailed airshed model, uncertainties in rate constants for aldehyde photolysis, nitric acid formation, and decomposition of peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate plus higher PAN analogues (PPN) exhibited the greatest impact on relative compound reactivity values. For the compounds and reactions examined, the combined responses to 2σ changes in reaction rate constants were approximately 15% of the predicted relative reactivity values, with the reactivities of ethylbenzene and toluene exhibiting the greatest response. The choice of reactivity quantification measures and the air quality models used had a greater impact on relative reactivity predictions than did the rate constant uncertainties. |
doi_str_mv | 10.1021/es9704489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18113792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29047122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-be3a0abfee5fd18b33eb87c8576461d1be5ff27635c80bc0871be51a034537dd3</originalsourceid><addsrcrecordid>eNplkd1uEzEQhVcIJELhgjewECBxsdRer9feyyotBNGopSTAneX1jhuX_QkeL6IvwvPWUaoglStbc75zZjSTZS8Zfc9owY4Ba0nLUtWPshkTBc2FEuxxNqOU8bzm1Y-n2TPEG0ppwamaZX_PnAMbkYyOzDfQe2s6sgS7MYPHnqwHCyEaP0QPiRlI3AC5AmOj_-3jLfkymSS55Io-qSnk29ilfwfkIlynDEvmY78dp6FFskY_XBNDVpsAkJ_6HgZMrtTwxIddVLeLXI4tdM-zJ850CC_u36Ns_eFsNV_k5xcfP81PznPDVRHzBrihpnEAwrVMNZxDo6RVQlZlxVrWpLorZMWFVbSxVMldiRnKS8Fl2_Kj7O0-dxvGXxNg1L1HC11nBhgn1EwxxmVdJPDVA_BmnEKaHXVaJGOyrOsEvdtDNoyIAZzeBt-bcKsZ1bvz6MN5Evv6PtBg2rkLZrAeD4aC1QUVVcLyPeYxwp-DbMJPXUkuhV5dftVsuag-X31faJH4N3veWPw34v_t7wArEqv3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230117499</pqid></control><display><type>article</type><title>Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model</title><source>ACS Publications</source><creator>Bergin, M. S ; Russell, A. G ; Milford, J. B</creator><creatorcontrib>Bergin, M. S ; Russell, A. G ; Milford, J. B</creatorcontrib><description>Accurate quantification of the ozone-forming potential, termed “reactivity”, of voltaile organic compounds (VOCs) is critical for correctly assessing the impacts of emissions on air quality. As reactivity-based regulations are being more carefully considered for urban ozone control strate gies, the uncertainties in our ability to quantify reactivity are gaining importance. This study utilized a three-dimensional air quality model to examine the uncertainty in reactivity quantification resulting from a set of reaction rate constant uncertainties. A previous study identified the set of rate constants that were most critical for single-cell model ozone predictions. With the detailed airshed model, uncertainties in rate constants for aldehyde photolysis, nitric acid formation, and decomposition of peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate plus higher PAN analogues (PPN) exhibited the greatest impact on relative compound reactivity values. For the compounds and reactions examined, the combined responses to 2σ changes in reaction rate constants were approximately 15% of the predicted relative reactivity values, with the reactivities of ethylbenzene and toluene exhibiting the greatest response. The choice of reactivity quantification measures and the air quality models used had a greater impact on relative reactivity predictions than did the rate constant uncertainties.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es9704489</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Air pollution ; Applied sciences ; Atmospheric pollution ; Chemistry ; Exact sciences and technology ; Ozone ; Pollutants physicochemistry study: properties, effects, reactions, transport and distribution ; Pollution ; VOCs ; Volatile organic compounds</subject><ispartof>Environmental science & technology, 1998-03, Vol.32 (5), p.694-703</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Chemical Society Mar 1, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-be3a0abfee5fd18b33eb87c8576461d1be5ff27635c80bc0871be51a034537dd3</citedby><cites>FETCH-LOGICAL-a382t-be3a0abfee5fd18b33eb87c8576461d1be5ff27635c80bc0871be51a034537dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es9704489$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es9704489$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2192056$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergin, M. S</creatorcontrib><creatorcontrib>Russell, A. G</creatorcontrib><creatorcontrib>Milford, J. B</creatorcontrib><title>Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Accurate quantification of the ozone-forming potential, termed “reactivity”, of voltaile organic compounds (VOCs) is critical for correctly assessing the impacts of emissions on air quality. As reactivity-based regulations are being more carefully considered for urban ozone control strate gies, the uncertainties in our ability to quantify reactivity are gaining importance. This study utilized a three-dimensional air quality model to examine the uncertainty in reactivity quantification resulting from a set of reaction rate constant uncertainties. A previous study identified the set of rate constants that were most critical for single-cell model ozone predictions. With the detailed airshed model, uncertainties in rate constants for aldehyde photolysis, nitric acid formation, and decomposition of peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate plus higher PAN analogues (PPN) exhibited the greatest impact on relative compound reactivity values. For the compounds and reactions examined, the combined responses to 2σ changes in reaction rate constants were approximately 15% of the predicted relative reactivity values, with the reactivities of ethylbenzene and toluene exhibiting the greatest response. The choice of reactivity quantification measures and the air quality models used had a greater impact on relative reactivity predictions than did the rate constant uncertainties.</description><subject>Air pollution</subject><subject>Applied sciences</subject><subject>Atmospheric pollution</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>Ozone</subject><subject>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</subject><subject>Pollution</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkd1uEzEQhVcIJELhgjewECBxsdRer9feyyotBNGopSTAneX1jhuX_QkeL6IvwvPWUaoglStbc75zZjSTZS8Zfc9owY4Ba0nLUtWPshkTBc2FEuxxNqOU8bzm1Y-n2TPEG0ppwamaZX_PnAMbkYyOzDfQe2s6sgS7MYPHnqwHCyEaP0QPiRlI3AC5AmOj_-3jLfkymSS55Io-qSnk29ilfwfkIlynDEvmY78dp6FFskY_XBNDVpsAkJ_6HgZMrtTwxIddVLeLXI4tdM-zJ850CC_u36Ns_eFsNV_k5xcfP81PznPDVRHzBrihpnEAwrVMNZxDo6RVQlZlxVrWpLorZMWFVbSxVMldiRnKS8Fl2_Kj7O0-dxvGXxNg1L1HC11nBhgn1EwxxmVdJPDVA_BmnEKaHXVaJGOyrOsEvdtDNoyIAZzeBt-bcKsZ1bvz6MN5Evv6PtBg2rkLZrAeD4aC1QUVVcLyPeYxwp-DbMJPXUkuhV5dftVsuag-X31faJH4N3veWPw34v_t7wArEqv3</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Bergin, M. S</creator><creator>Russell, A. G</creator><creator>Milford, J. B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19980301</creationdate><title>Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model</title><author>Bergin, M. S ; Russell, A. G ; Milford, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-be3a0abfee5fd18b33eb87c8576461d1be5ff27635c80bc0871be51a034537dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Air pollution</topic><topic>Applied sciences</topic><topic>Atmospheric pollution</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>Ozone</topic><topic>Pollutants physicochemistry study: properties, effects, reactions, transport and distribution</topic><topic>Pollution</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergin, M. S</creatorcontrib><creatorcontrib>Russell, A. G</creatorcontrib><creatorcontrib>Milford, J. B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergin, M. S</au><au>Russell, A. G</au><au>Milford, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>1998-03-01</date><risdate>1998</risdate><volume>32</volume><issue>5</issue><spage>694</spage><epage>703</epage><pages>694-703</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Accurate quantification of the ozone-forming potential, termed “reactivity”, of voltaile organic compounds (VOCs) is critical for correctly assessing the impacts of emissions on air quality. As reactivity-based regulations are being more carefully considered for urban ozone control strate gies, the uncertainties in our ability to quantify reactivity are gaining importance. This study utilized a three-dimensional air quality model to examine the uncertainty in reactivity quantification resulting from a set of reaction rate constant uncertainties. A previous study identified the set of rate constants that were most critical for single-cell model ozone predictions. With the detailed airshed model, uncertainties in rate constants for aldehyde photolysis, nitric acid formation, and decomposition of peroxy acetyl nitrate (PAN) and peroxy propionyl nitrate plus higher PAN analogues (PPN) exhibited the greatest impact on relative compound reactivity values. For the compounds and reactions examined, the combined responses to 2σ changes in reaction rate constants were approximately 15% of the predicted relative reactivity values, with the reactivities of ethylbenzene and toluene exhibiting the greatest response. The choice of reactivity quantification measures and the air quality models used had a greater impact on relative reactivity predictions than did the rate constant uncertainties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/es9704489</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 1998-03, Vol.32 (5), p.694-703 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_18113792 |
source | ACS Publications |
subjects | Air pollution Applied sciences Atmospheric pollution Chemistry Exact sciences and technology Ozone Pollutants physicochemistry study: properties, effects, reactions, transport and distribution Pollution VOCs Volatile organic compounds |
title | Effects of Chemical Mechanism Uncertainties on the Reactivity Quantification of Volatile Organic Compounds Using a Three-Dimensional Air Quality Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Chemical%20Mechanism%20Uncertainties%20on%20the%20Reactivity%20Quantification%20of%20Volatile%20Organic%20Compounds%20Using%20a%20Three-Dimensional%20Air%20Quality%20Model&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Bergin,%20M.%20S&rft.date=1998-03-01&rft.volume=32&rft.issue=5&rft.spage=694&rft.epage=703&rft.pages=694-703&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es9704489&rft_dat=%3Cproquest_cross%3E29047122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230117499&rft_id=info:pmid/&rfr_iscdi=true |