Detecting Climate Signals: Some Bayesian Aspects

A Bayesian approach to detecting forced climate signals in a dataset is presented. First, the detection algorithm derived is shown to be capable of uniquely identifying several signals optimally. Other detection techniques are shown to be limiting cases. Second, this approach naturally lends itself...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 1998-04, Vol.11 (4), p.640-651
1. Verfasser: Leroy, Stephen S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 4
container_start_page 640
container_title Journal of climate
container_volume 11
creator Leroy, Stephen S.
description A Bayesian approach to detecting forced climate signals in a dataset is presented. First, the detection algorithm derived is shown to be capable of uniquely identifying several signals optimally. Other detection techniques are shown to be limiting cases. Second, this approach naturally lends itself to rating models relatively according to their predictions. Both the accuracy of the model prediction and the precision of the prediction are accounted for in rating models. In general, complex models are less probable than simpler models. Finally, this approach to detection is used to detect a signal induced by the solar cycle in the surface temperature record over the past 100 yr. The solar cycle signal-to-noise ratio is found to be ∼1 but is probably not detected. Estimates of the natural variability noise are taken from model prescriptions, each of which is vastly different. The Geophysical Fluid Dynamics Laboratory models, though, best match the residual temperature fluctuations after the signals are subtracted. The Bayesian viewpoint emphasizes the need for the estimation of uncertainties associated with model predictions. Without estimates of uncertainties it is impossible to determine the predictive capabilities of models.
doi_str_mv 10.1175/1520-0442(1998)011<0640:DCSSBA>2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18113544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26242947</jstor_id><sourcerecordid>26242947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d7f1ad77e768af7d5c7bcdbeb3e2c737ee900366929947551d212029ab3d33b43</originalsourceid><addsrcrecordid>eNpFkMFKw0AQhhdRsFYfwIPQg4ge0s7ObnazKkJNtQqFHqrnZbPZlJQ0qdn04NubkFJPc5iPf-b_CJlQGFMqwwkNEQLgHO-pUtEDUPoMgsPjLF6tXqcvOIZxvHzCEzI4kqdkAJHiQSTD8JxceL8BoCgABuR65hpnm7xcj-Ii35rGjVb5ujSFvyRnWTvc1WEOyff721f8ESyW8894uggsE7wJUplRk0rppIhMJtPQysSmiUuYQyuZdE4BMCEUKsXb-zRFioDKJCxlLOFsSO763F1d_eydb_Q299YVhSldtfeaRpSykHfgvAdtXXlfu0zv6vbj-ldT0J0a3RXWXWHdqdGtGt2p0b0ajRp0vNTYJt0eThpvTZHVprS5P8YhcuBCtNhNj218U9X_a4Ec2y7sD1ztbk8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18113544</pqid></control><display><type>article</type><title>Detecting Climate Signals: Some Bayesian Aspects</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Leroy, Stephen S.</creator><creatorcontrib>Leroy, Stephen S.</creatorcontrib><description>A Bayesian approach to detecting forced climate signals in a dataset is presented. First, the detection algorithm derived is shown to be capable of uniquely identifying several signals optimally. Other detection techniques are shown to be limiting cases. Second, this approach naturally lends itself to rating models relatively according to their predictions. Both the accuracy of the model prediction and the precision of the prediction are accounted for in rating models. In general, complex models are less probable than simpler models. Finally, this approach to detection is used to detect a signal induced by the solar cycle in the surface temperature record over the past 100 yr. The solar cycle signal-to-noise ratio is found to be ∼1 but is probably not detected. Estimates of the natural variability noise are taken from model prescriptions, each of which is vastly different. The Geophysical Fluid Dynamics Laboratory models, though, best match the residual temperature fluctuations after the signals are subtracted. The Bayesian viewpoint emphasizes the need for the estimation of uncertainties associated with model predictions. Without estimates of uncertainties it is impossible to determine the predictive capabilities of models.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1998)011&lt;0640:DCSSBA&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Bayesian theories ; Climate models ; Data models ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Modeling ; Parametric models ; Predictive modeling ; Probabilities ; Signal detection ; Solar activity cycles ; Statistics</subject><ispartof>Journal of climate, 1998-04, Vol.11 (4), p.640-651</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26242947$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26242947$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2240466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Leroy, Stephen S.</creatorcontrib><title>Detecting Climate Signals: Some Bayesian Aspects</title><title>Journal of climate</title><description>A Bayesian approach to detecting forced climate signals in a dataset is presented. First, the detection algorithm derived is shown to be capable of uniquely identifying several signals optimally. Other detection techniques are shown to be limiting cases. Second, this approach naturally lends itself to rating models relatively according to their predictions. Both the accuracy of the model prediction and the precision of the prediction are accounted for in rating models. In general, complex models are less probable than simpler models. Finally, this approach to detection is used to detect a signal induced by the solar cycle in the surface temperature record over the past 100 yr. The solar cycle signal-to-noise ratio is found to be ∼1 but is probably not detected. Estimates of the natural variability noise are taken from model prescriptions, each of which is vastly different. The Geophysical Fluid Dynamics Laboratory models, though, best match the residual temperature fluctuations after the signals are subtracted. The Bayesian viewpoint emphasizes the need for the estimation of uncertainties associated with model predictions. Without estimates of uncertainties it is impossible to determine the predictive capabilities of models.</description><subject>Bayesian theories</subject><subject>Climate models</subject><subject>Data models</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Predictive modeling</subject><subject>Probabilities</subject><subject>Signal detection</subject><subject>Solar activity cycles</subject><subject>Statistics</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkMFKw0AQhhdRsFYfwIPQg4ge0s7ObnazKkJNtQqFHqrnZbPZlJQ0qdn04NubkFJPc5iPf-b_CJlQGFMqwwkNEQLgHO-pUtEDUPoMgsPjLF6tXqcvOIZxvHzCEzI4kqdkAJHiQSTD8JxceL8BoCgABuR65hpnm7xcj-Ii35rGjVb5ujSFvyRnWTvc1WEOyff721f8ESyW8894uggsE7wJUplRk0rppIhMJtPQysSmiUuYQyuZdE4BMCEUKsXb-zRFioDKJCxlLOFsSO763F1d_eydb_Q299YVhSldtfeaRpSykHfgvAdtXXlfu0zv6vbj-ldT0J0a3RXWXWHdqdGtGt2p0b0ajRp0vNTYJt0eThpvTZHVprS5P8YhcuBCtNhNj218U9X_a4Ec2y7sD1ztbk8</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Leroy, Stephen S.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>19980401</creationdate><title>Detecting Climate Signals</title><author>Leroy, Stephen S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d7f1ad77e768af7d5c7bcdbeb3e2c737ee900366929947551d212029ab3d33b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bayesian theories</topic><topic>Climate models</topic><topic>Data models</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Predictive modeling</topic><topic>Probabilities</topic><topic>Signal detection</topic><topic>Solar activity cycles</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leroy, Stephen S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leroy, Stephen S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Climate Signals: Some Bayesian Aspects</atitle><jtitle>Journal of climate</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>11</volume><issue>4</issue><spage>640</spage><epage>651</epage><pages>640-651</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A Bayesian approach to detecting forced climate signals in a dataset is presented. First, the detection algorithm derived is shown to be capable of uniquely identifying several signals optimally. Other detection techniques are shown to be limiting cases. Second, this approach naturally lends itself to rating models relatively according to their predictions. Both the accuracy of the model prediction and the precision of the prediction are accounted for in rating models. In general, complex models are less probable than simpler models. Finally, this approach to detection is used to detect a signal induced by the solar cycle in the surface temperature record over the past 100 yr. The solar cycle signal-to-noise ratio is found to be ∼1 but is probably not detected. Estimates of the natural variability noise are taken from model prescriptions, each of which is vastly different. The Geophysical Fluid Dynamics Laboratory models, though, best match the residual temperature fluctuations after the signals are subtracted. The Bayesian viewpoint emphasizes the need for the estimation of uncertainties associated with model predictions. Without estimates of uncertainties it is impossible to determine the predictive capabilities of models.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1998)011&lt;0640:DCSSBA&gt;2.0.CO;2</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 1998-04, Vol.11 (4), p.640-651
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_18113544
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing
subjects Bayesian theories
Climate models
Data models
Earth, ocean, space
Exact sciences and technology
External geophysics
Geophysics. Techniques, methods, instrumentation and models
Modeling
Parametric models
Predictive modeling
Probabilities
Signal detection
Solar activity cycles
Statistics
title Detecting Climate Signals: Some Bayesian Aspects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Climate%20Signals:%20Some%20Bayesian%20Aspects&rft.jtitle=Journal%20of%20climate&rft.au=Leroy,%20Stephen%20S.&rft.date=1998-04-01&rft.volume=11&rft.issue=4&rft.spage=640&rft.epage=651&rft.pages=640-651&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1998)011%3C0640:DCSSBA%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26242947%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18113544&rft_id=info:pmid/&rft_jstor_id=26242947&rfr_iscdi=true