Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation

Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2016-08, Vol.24 (2), p.311-323
Hauptverfasser: Corbet, Cyril, Pinto, Adán, Martherus, Ruben, Santiago de Jesus, João Pedro, Polet, Florence, Feron, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 2
container_start_page 311
container_title Cell metabolism
container_volume 24
creator Corbet, Cyril
Pinto, Adán
Martherus, Ruben
Santiago de Jesus, João Pedro
Polet, Florence
Feron, Olivier
description Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. [Display omitted] •Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.
doi_str_mv 10.1016/j.cmet.2016.07.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811291904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413116303485</els_id><sourcerecordid>1811291904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi0EoqXwAiyQl2wS7Djxj8SmCpQitUJCsLYc-2bGo8QutqfSrHlxHE1hycpX8vk-3XsQektJSwnlHw6tXaG0XZ1bIlpC2DN0SRXrGtF35Hmdh4E0PWX0Ar3K-VABzhR7iS46MRApBb9Ev6-tdzH7jD8l_wgZlz3g7_CQ4i6ZdfVhh-OMb0wpJ7yh-B6KmeLi84p9wKMJFhIeYVm2aIrH3R6PexN2tar-3_sS7T4Gl7xZsAkO3_pcYoBaBuW0mOJjeI1ezGbJ8ObpvUI_bz7_GG-bu29fvo7Xd43tOS-NVAOjApQc-MSZZRO1nZwEk5Ybq6iUxvV2njmZDZnowEUHhPeOukFIxdXMrtD7c2-97tcRctGrz7aubgLEY9ZUUtopqkhf0e6M2hRzTjDrh-RXk06aEr3J1we9ydebfE2Erm5r6N1T_3Fawf2L_LVdgY9nAOqVjx6SztZDNeh8Alu0i_5__X8ABUCWpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811291904</pqid></control><display><type>article</type><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Open Access: Cell Press Free Archives</source><source>EZB Electronic Journals Library</source><creator>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</creator><creatorcontrib>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</creatorcontrib><description>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. [Display omitted] •Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2016.07.003</identifier><identifier>PMID: 27508876</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - metabolism ; Acetylation ; Acidosis - metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation ; Cell Respiration ; Cellular Reprogramming ; Electron Transport Complex I - metabolism ; Fatty Acids - metabolism ; Female ; Glutamine - metabolism ; Histones - metabolism ; Humans ; Hydrogen-Ion Concentration ; Metabolic Networks and Pathways ; Mice, Nude ; Mitochondria - metabolism ; Models, Biological ; Neoplasms - metabolism ; Neoplasms - pathology ; Oxidation-Reduction ; Reactive Oxygen Species - metabolism</subject><ispartof>Cell metabolism, 2016-08, Vol.24 (2), p.311-323</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</citedby><cites>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmet.2016.07.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27508876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corbet, Cyril</creatorcontrib><creatorcontrib>Pinto, Adán</creatorcontrib><creatorcontrib>Martherus, Ruben</creatorcontrib><creatorcontrib>Santiago de Jesus, João Pedro</creatorcontrib><creatorcontrib>Polet, Florence</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. [Display omitted] •Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</description><subject>Acetyl Coenzyme A - metabolism</subject><subject>Acetylation</subject><subject>Acidosis - metabolism</subject><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Respiration</subject><subject>Cellular Reprogramming</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Female</subject><subject>Glutamine - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice, Nude</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Oxidation-Reduction</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1DAURi0EoqXwAiyQl2wS7Djxj8SmCpQitUJCsLYc-2bGo8QutqfSrHlxHE1hycpX8vk-3XsQektJSwnlHw6tXaG0XZ1bIlpC2DN0SRXrGtF35Hmdh4E0PWX0Ar3K-VABzhR7iS46MRApBb9Ev6-tdzH7jD8l_wgZlz3g7_CQ4i6ZdfVhh-OMb0wpJ7yh-B6KmeLi84p9wKMJFhIeYVm2aIrH3R6PexN2tar-3_sS7T4Gl7xZsAkO3_pcYoBaBuW0mOJjeI1ezGbJ8ObpvUI_bz7_GG-bu29fvo7Xd43tOS-NVAOjApQc-MSZZRO1nZwEk5Ybq6iUxvV2njmZDZnowEUHhPeOukFIxdXMrtD7c2-97tcRctGrz7aubgLEY9ZUUtopqkhf0e6M2hRzTjDrh-RXk06aEr3J1we9ydebfE2Erm5r6N1T_3Fawf2L_LVdgY9nAOqVjx6SztZDNeh8Alu0i_5__X8ABUCWpw</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Corbet, Cyril</creator><creator>Pinto, Adán</creator><creator>Martherus, Ruben</creator><creator>Santiago de Jesus, João Pedro</creator><creator>Polet, Florence</creator><creator>Feron, Olivier</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160809</creationdate><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><author>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetyl Coenzyme A - metabolism</topic><topic>Acetylation</topic><topic>Acidosis - metabolism</topic><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Respiration</topic><topic>Cellular Reprogramming</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Female</topic><topic>Glutamine - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice, Nude</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Oxidation-Reduction</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corbet, Cyril</creatorcontrib><creatorcontrib>Pinto, Adán</creatorcontrib><creatorcontrib>Martherus, Ruben</creatorcontrib><creatorcontrib>Santiago de Jesus, João Pedro</creatorcontrib><creatorcontrib>Polet, Florence</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corbet, Cyril</au><au>Pinto, Adán</au><au>Martherus, Ruben</au><au>Santiago de Jesus, João Pedro</au><au>Polet, Florence</au><au>Feron, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>24</volume><issue>2</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis. [Display omitted] •Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27508876</pmid><doi>10.1016/j.cmet.2016.07.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2016-08, Vol.24 (2), p.311-323
issn 1550-4131
1932-7420
language eng
recordid cdi_proquest_miscellaneous_1811291904
source MEDLINE; Elsevier ScienceDirect Journals Complete; Open Access: Cell Press Free Archives; EZB Electronic Journals Library
subjects Acetyl Coenzyme A - metabolism
Acetylation
Acidosis - metabolism
Animals
Cell Line, Tumor
Cell Proliferation
Cell Respiration
Cellular Reprogramming
Electron Transport Complex I - metabolism
Fatty Acids - metabolism
Female
Glutamine - metabolism
Histones - metabolism
Humans
Hydrogen-Ion Concentration
Metabolic Networks and Pathways
Mice, Nude
Mitochondria - metabolism
Models, Biological
Neoplasms - metabolism
Neoplasms - pathology
Oxidation-Reduction
Reactive Oxygen Species - metabolism
title Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidosis%20Drives%20the%20Reprogramming%20of%20Fatty%20Acid%20Metabolism%20in%20Cancer%20Cells%20through%20Changes%20in%20Mitochondrial%20and%20Histone%20Acetylation&rft.jtitle=Cell%20metabolism&rft.au=Corbet,%20Cyril&rft.date=2016-08-09&rft.volume=24&rft.issue=2&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2016.07.003&rft_dat=%3Cproquest_cross%3E1811291904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811291904&rft_id=info:pmid/27508876&rft_els_id=S1550413116303485&rfr_iscdi=true