Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation
Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted...
Gespeichert in:
Veröffentlicht in: | Cell metabolism 2016-08, Vol.24 (2), p.311-323 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 2 |
container_start_page | 311 |
container_title | Cell metabolism |
container_volume | 24 |
creator | Corbet, Cyril Pinto, Adán Martherus, Ruben Santiago de Jesus, João Pedro Polet, Florence Feron, Olivier |
description | Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
[Display omitted]
•Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment
Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2. |
doi_str_mv | 10.1016/j.cmet.2016.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1811291904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413116303485</els_id><sourcerecordid>1811291904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi0EoqXwAiyQl2wS7Djxj8SmCpQitUJCsLYc-2bGo8QutqfSrHlxHE1hycpX8vk-3XsQektJSwnlHw6tXaG0XZ1bIlpC2DN0SRXrGtF35Hmdh4E0PWX0Ar3K-VABzhR7iS46MRApBb9Ev6-tdzH7jD8l_wgZlz3g7_CQ4i6ZdfVhh-OMb0wpJ7yh-B6KmeLi84p9wKMJFhIeYVm2aIrH3R6PexN2tar-3_sS7T4Gl7xZsAkO3_pcYoBaBuW0mOJjeI1ezGbJ8ObpvUI_bz7_GG-bu29fvo7Xd43tOS-NVAOjApQc-MSZZRO1nZwEk5Ybq6iUxvV2njmZDZnowEUHhPeOukFIxdXMrtD7c2-97tcRctGrz7aubgLEY9ZUUtopqkhf0e6M2hRzTjDrh-RXk06aEr3J1we9ydebfE2Erm5r6N1T_3Fawf2L_LVdgY9nAOqVjx6SztZDNeh8Alu0i_5__X8ABUCWpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811291904</pqid></control><display><type>article</type><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Open Access: Cell Press Free Archives</source><source>EZB Electronic Journals Library</source><creator>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</creator><creatorcontrib>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</creatorcontrib><description>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
[Display omitted]
•Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment
Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2016.07.003</identifier><identifier>PMID: 27508876</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - metabolism ; Acetylation ; Acidosis - metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation ; Cell Respiration ; Cellular Reprogramming ; Electron Transport Complex I - metabolism ; Fatty Acids - metabolism ; Female ; Glutamine - metabolism ; Histones - metabolism ; Humans ; Hydrogen-Ion Concentration ; Metabolic Networks and Pathways ; Mice, Nude ; Mitochondria - metabolism ; Models, Biological ; Neoplasms - metabolism ; Neoplasms - pathology ; Oxidation-Reduction ; Reactive Oxygen Species - metabolism</subject><ispartof>Cell metabolism, 2016-08, Vol.24 (2), p.311-323</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</citedby><cites>FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmet.2016.07.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27508876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Corbet, Cyril</creatorcontrib><creatorcontrib>Pinto, Adán</creatorcontrib><creatorcontrib>Martherus, Ruben</creatorcontrib><creatorcontrib>Santiago de Jesus, João Pedro</creatorcontrib><creatorcontrib>Polet, Florence</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
[Display omitted]
•Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment
Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</description><subject>Acetyl Coenzyme A - metabolism</subject><subject>Acetylation</subject><subject>Acidosis - metabolism</subject><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Respiration</subject><subject>Cellular Reprogramming</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Fatty Acids - metabolism</subject><subject>Female</subject><subject>Glutamine - metabolism</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice, Nude</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Oxidation-Reduction</subject><subject>Reactive Oxygen Species - metabolism</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1DAURi0EoqXwAiyQl2wS7Djxj8SmCpQitUJCsLYc-2bGo8QutqfSrHlxHE1hycpX8vk-3XsQektJSwnlHw6tXaG0XZ1bIlpC2DN0SRXrGtF35Hmdh4E0PWX0Ar3K-VABzhR7iS46MRApBb9Ev6-tdzH7jD8l_wgZlz3g7_CQ4i6ZdfVhh-OMb0wpJ7yh-B6KmeLi84p9wKMJFhIeYVm2aIrH3R6PexN2tar-3_sS7T4Gl7xZsAkO3_pcYoBaBuW0mOJjeI1ezGbJ8ObpvUI_bz7_GG-bu29fvo7Xd43tOS-NVAOjApQc-MSZZRO1nZwEk5Ybq6iUxvV2njmZDZnowEUHhPeOukFIxdXMrtD7c2-97tcRctGrz7aubgLEY9ZUUtopqkhf0e6M2hRzTjDrh-RXk06aEr3J1we9ydebfE2Erm5r6N1T_3Fawf2L_LVdgY9nAOqVjx6SztZDNeh8Alu0i_5__X8ABUCWpw</recordid><startdate>20160809</startdate><enddate>20160809</enddate><creator>Corbet, Cyril</creator><creator>Pinto, Adán</creator><creator>Martherus, Ruben</creator><creator>Santiago de Jesus, João Pedro</creator><creator>Polet, Florence</creator><creator>Feron, Olivier</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160809</creationdate><title>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</title><author>Corbet, Cyril ; Pinto, Adán ; Martherus, Ruben ; Santiago de Jesus, João Pedro ; Polet, Florence ; Feron, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-895317e9856b63c3b1c28b738c6ac9188ad4cff60fa0b15672e064d1d578969f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetyl Coenzyme A - metabolism</topic><topic>Acetylation</topic><topic>Acidosis - metabolism</topic><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Respiration</topic><topic>Cellular Reprogramming</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Fatty Acids - metabolism</topic><topic>Female</topic><topic>Glutamine - metabolism</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice, Nude</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Oxidation-Reduction</topic><topic>Reactive Oxygen Species - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Corbet, Cyril</creatorcontrib><creatorcontrib>Pinto, Adán</creatorcontrib><creatorcontrib>Martherus, Ruben</creatorcontrib><creatorcontrib>Santiago de Jesus, João Pedro</creatorcontrib><creatorcontrib>Polet, Florence</creatorcontrib><creatorcontrib>Feron, Olivier</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Corbet, Cyril</au><au>Pinto, Adán</au><au>Martherus, Ruben</au><au>Santiago de Jesus, João Pedro</au><au>Polet, Florence</au><au>Feron, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2016-08-09</date><risdate>2016</risdate><volume>24</volume><issue>2</issue><spage>311</spage><epage>323</epage><pages>311-323</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Bioenergetic preferences of cancer cells foster tumor acidosis that in turn leads to dramatic reduction in glycolysis and glucose-derived acetyl-coenzyme A (acetyl-CoA). Here, we show that the main source of this critical two-carbon intermediate becomes fatty acid (FA) oxidation in acidic pH-adapted cancer cells. FA-derived acetyl-CoA not only fuels the tricarboxylic acid (TCA) cycle and supports tumor cell respiration under acidosis, but also contributes to non-enzymatic mitochondrial protein hyperacetylation, thereby restraining complex I activity and ROS production. Also, while oxidative metabolism of glutamine supports the canonical TCA cycle in acidic conditions, reductive carboxylation of glutamine-derived α-ketoglutarate sustains FA synthesis. Concomitance of FA oxidation and synthesis is enabled upon sirtuin-mediated histone deacetylation and consecutive downregulation of acetyl-CoA carboxylase ACC2 making mitochondrial fatty acyl-CoA degradation compatible with cytosolic lipogenesis. Perturbations of these regulatory processes lead to tumor growth inhibitory effects further identifying FA metabolism as a critical determinant of tumor cell proliferation under acidosis.
[Display omitted]
•Chronic tumor acidosis induces metabolic rewiring toward fatty acid oxidation•Acidosis-induced mitochondrial hyperacetylation restrains complex I activity•Histone deacetylation-mediated ACC2 repression allows FAO and FAS concomitance•Fatty acid metabolism is a promising target to tackle the tumor acidic compartment
Like hypoxia, acidosis is nowadays recognized as a hallmark of many tumors. Corbet et al. show that acidic pH profoundly reprograms the metabolism of cancer cells toward fatty acid oxidation. Associated changes in the acetylome further tune this rewiring by clamping mitochondrial complex I activity and downregulating acetyl-CoA carboxylase ACC2.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27508876</pmid><doi>10.1016/j.cmet.2016.07.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4131 |
ispartof | Cell metabolism, 2016-08, Vol.24 (2), p.311-323 |
issn | 1550-4131 1932-7420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1811291904 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Open Access: Cell Press Free Archives; EZB Electronic Journals Library |
subjects | Acetyl Coenzyme A - metabolism Acetylation Acidosis - metabolism Animals Cell Line, Tumor Cell Proliferation Cell Respiration Cellular Reprogramming Electron Transport Complex I - metabolism Fatty Acids - metabolism Female Glutamine - metabolism Histones - metabolism Humans Hydrogen-Ion Concentration Metabolic Networks and Pathways Mice, Nude Mitochondria - metabolism Models, Biological Neoplasms - metabolism Neoplasms - pathology Oxidation-Reduction Reactive Oxygen Species - metabolism |
title | Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A12%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acidosis%20Drives%20the%20Reprogramming%20of%20Fatty%20Acid%20Metabolism%20in%20Cancer%20Cells%20through%20Changes%20in%20Mitochondrial%20and%20Histone%20Acetylation&rft.jtitle=Cell%20metabolism&rft.au=Corbet,%20Cyril&rft.date=2016-08-09&rft.volume=24&rft.issue=2&rft.spage=311&rft.epage=323&rft.pages=311-323&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2016.07.003&rft_dat=%3Cproquest_cross%3E1811291904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811291904&rft_id=info:pmid/27508876&rft_els_id=S1550413116303485&rfr_iscdi=true |