Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation
Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the cont...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-10, Vol.98 (22), p.12479-12484 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12484 |
---|---|
container_issue | 22 |
container_start_page | 12479 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Duvvuri, Umamaheswar Goldberg, Ari D. Kranz, James K. Hoang, Linh Reddy, Ravinder Wehrli, Felix W. Wand, A. Joshua Englander, S. W. Leigh, John S. |
description | Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρdispersion in peptide solutions (14N- and15N-labeled), glycosaminoglycan solutions, and samples of bovine articular cartilage before and after proteoglycan degradation. We find in model systems and tissue that hydrogen exchange from NH and OH groups to water dominates the low frequency water T1ρdispersion, in the context of the model used to interpret the relaxation data. Further, low frequency dispersion changes are correlated with loss of proteoglycan from the extra-cellular matrix of articular cartilage. This finding has significance for the noninvasive detection of matrix degradation. |
doi_str_mv | 10.1073/pnas.221471898 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18111494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056931</jstor_id><sourcerecordid>3056931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-1b7384d5a859fb269683a9b9d06e53ee84635e3238968e3752f20a157b816a383</originalsourceid><addsrcrecordid>eNqFkkuP0zAURiMEYsrAlhUCiwVi0-JHnNgjNtAZYKThIRjE0nLSm9RVYhfbqTq_iL-JM-2UxwJWtnzPubrX-rLsIcEzgkv2Ym11mFFK8pIIKW5lE4IlmRa5xLezCca0nIqc5kfZvRBWGGPJBb6bHRFS4KLk-ST78U1H8Oi9bi1EU6PP0OmtjsZZdGrCGnwYr8ai18Z1rjW17tCXqxChDyfocglo7mz0phquFdegT97FdDvb1kttW0DaLtB5v-6SOSIBNc6jmMQPzhq70cFsAJ1ChPqmw1z7aDrdjs-t14tr7352p9FdgAf78zj7-ubscv5uevHx7fn81cW05hTHKalKJvIF14LLpqKFLATTspILXABnACIvGAdGmUgVYCWnDcWa8LISpNBMsOPs5a7veqh6WNSQttOdWnvTa3-lnDbqz4o1S9W6jSowLmXSn-11774PEKLqTaih67QFNwRVUpqG4v8HiSCE5DJP4NO_wJUbvE1_oCgmTDJZjN1mO6j2LgQPzWFggtWYEzXmRB1ykoTHv6_5C98HIwHP98Ao3pSlSD0UoXkpVTN0XYRtTOiTf6OJeLQjViE6f0AY5ml2wn4C5c3dzQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201393969</pqid></control><display><type>article</type><title>Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Duvvuri, Umamaheswar ; Goldberg, Ari D. ; Kranz, James K. ; Hoang, Linh ; Reddy, Ravinder ; Wehrli, Felix W. ; Wand, A. Joshua ; Englander, S. W. ; Leigh, John S.</creator><creatorcontrib>Duvvuri, Umamaheswar ; Goldberg, Ari D. ; Kranz, James K. ; Hoang, Linh ; Reddy, Ravinder ; Wehrli, Felix W. ; Wand, A. Joshua ; Englander, S. W. ; Leigh, John S.</creatorcontrib><description>Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρdispersion in peptide solutions (14N- and15N-labeled), glycosaminoglycan solutions, and samples of bovine articular cartilage before and after proteoglycan degradation. We find in model systems and tissue that hydrogen exchange from NH and OH groups to water dominates the low frequency water T1ρdispersion, in the context of the model used to interpret the relaxation data. Further, low frequency dispersion changes are correlated with loss of proteoglycan from the extra-cellular matrix of articular cartilage. This finding has significance for the noninvasive detection of matrix degradation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.221471898</identifier><identifier>PMID: 11606754</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Arthritis ; Biological Sciences ; Biology ; Cartilage ; Cartilage, Articular - metabolism ; Cattle ; Chemical equilibrium ; Collagen - metabolism ; Collagens ; Exchange rates ; glycosaminoglycans ; Hydroxyls ; Low frequencies ; Magnetic Resonance Spectroscopy ; Molecular Sequence Data ; Molecules ; Osteoporosis ; Physics ; Proteoglycans - metabolism ; Protons ; Rotation ; Ungulates ; Water</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (22), p.12479-12484</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 23, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-1b7384d5a859fb269683a9b9d06e53ee84635e3238968e3752f20a157b816a383</citedby><cites>FETCH-LOGICAL-c520t-1b7384d5a859fb269683a9b9d06e53ee84635e3238968e3752f20a157b816a383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056931$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056931$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11606754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duvvuri, Umamaheswar</creatorcontrib><creatorcontrib>Goldberg, Ari D.</creatorcontrib><creatorcontrib>Kranz, James K.</creatorcontrib><creatorcontrib>Hoang, Linh</creatorcontrib><creatorcontrib>Reddy, Ravinder</creatorcontrib><creatorcontrib>Wehrli, Felix W.</creatorcontrib><creatorcontrib>Wand, A. Joshua</creatorcontrib><creatorcontrib>Englander, S. W.</creatorcontrib><creatorcontrib>Leigh, John S.</creatorcontrib><title>Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρdispersion in peptide solutions (14N- and15N-labeled), glycosaminoglycan solutions, and samples of bovine articular cartilage before and after proteoglycan degradation. We find in model systems and tissue that hydrogen exchange from NH and OH groups to water dominates the low frequency water T1ρdispersion, in the context of the model used to interpret the relaxation data. Further, low frequency dispersion changes are correlated with loss of proteoglycan from the extra-cellular matrix of articular cartilage. This finding has significance for the noninvasive detection of matrix degradation.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arthritis</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Cartilage</subject><subject>Cartilage, Articular - metabolism</subject><subject>Cattle</subject><subject>Chemical equilibrium</subject><subject>Collagen - metabolism</subject><subject>Collagens</subject><subject>Exchange rates</subject><subject>glycosaminoglycans</subject><subject>Hydroxyls</subject><subject>Low frequencies</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Osteoporosis</subject><subject>Physics</subject><subject>Proteoglycans - metabolism</subject><subject>Protons</subject><subject>Rotation</subject><subject>Ungulates</subject><subject>Water</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuP0zAURiMEYsrAlhUCiwVi0-JHnNgjNtAZYKThIRjE0nLSm9RVYhfbqTq_iL-JM-2UxwJWtnzPubrX-rLsIcEzgkv2Ym11mFFK8pIIKW5lE4IlmRa5xLezCca0nIqc5kfZvRBWGGPJBb6bHRFS4KLk-ST78U1H8Oi9bi1EU6PP0OmtjsZZdGrCGnwYr8ai18Z1rjW17tCXqxChDyfocglo7mz0phquFdegT97FdDvb1kttW0DaLtB5v-6SOSIBNc6jmMQPzhq70cFsAJ1ChPqmw1z7aDrdjs-t14tr7352p9FdgAf78zj7-ubscv5uevHx7fn81cW05hTHKalKJvIF14LLpqKFLATTspILXABnACIvGAdGmUgVYCWnDcWa8LISpNBMsOPs5a7veqh6WNSQttOdWnvTa3-lnDbqz4o1S9W6jSowLmXSn-11774PEKLqTaih67QFNwRVUpqG4v8HiSCE5DJP4NO_wJUbvE1_oCgmTDJZjN1mO6j2LgQPzWFggtWYEzXmRB1ykoTHv6_5C98HIwHP98Ao3pSlSD0UoXkpVTN0XYRtTOiTf6OJeLQjViE6f0AY5ml2wn4C5c3dzQ</recordid><startdate>20011023</startdate><enddate>20011023</enddate><creator>Duvvuri, Umamaheswar</creator><creator>Goldberg, Ari D.</creator><creator>Kranz, James K.</creator><creator>Hoang, Linh</creator><creator>Reddy, Ravinder</creator><creator>Wehrli, Felix W.</creator><creator>Wand, A. Joshua</creator><creator>Englander, S. W.</creator><creator>Leigh, John S.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011023</creationdate><title>Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation</title><author>Duvvuri, Umamaheswar ; Goldberg, Ari D. ; Kranz, James K. ; Hoang, Linh ; Reddy, Ravinder ; Wehrli, Felix W. ; Wand, A. Joshua ; Englander, S. W. ; Leigh, John S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-1b7384d5a859fb269683a9b9d06e53ee84635e3238968e3752f20a157b816a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arthritis</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Cartilage</topic><topic>Cartilage, Articular - metabolism</topic><topic>Cattle</topic><topic>Chemical equilibrium</topic><topic>Collagen - metabolism</topic><topic>Collagens</topic><topic>Exchange rates</topic><topic>glycosaminoglycans</topic><topic>Hydroxyls</topic><topic>Low frequencies</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Osteoporosis</topic><topic>Physics</topic><topic>Proteoglycans - metabolism</topic><topic>Protons</topic><topic>Rotation</topic><topic>Ungulates</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duvvuri, Umamaheswar</creatorcontrib><creatorcontrib>Goldberg, Ari D.</creatorcontrib><creatorcontrib>Kranz, James K.</creatorcontrib><creatorcontrib>Hoang, Linh</creatorcontrib><creatorcontrib>Reddy, Ravinder</creatorcontrib><creatorcontrib>Wehrli, Felix W.</creatorcontrib><creatorcontrib>Wand, A. Joshua</creatorcontrib><creatorcontrib>Englander, S. W.</creatorcontrib><creatorcontrib>Leigh, John S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duvvuri, Umamaheswar</au><au>Goldberg, Ari D.</au><au>Kranz, James K.</au><au>Hoang, Linh</au><au>Reddy, Ravinder</au><au>Wehrli, Felix W.</au><au>Wand, A. Joshua</au><au>Englander, S. W.</au><au>Leigh, John S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-10-23</date><risdate>2001</risdate><volume>98</volume><issue>22</issue><spage>12479</spage><epage>12484</epage><pages>12479-12484</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T1ρ) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T1ρdispersion in peptide solutions (14N- and15N-labeled), glycosaminoglycan solutions, and samples of bovine articular cartilage before and after proteoglycan degradation. We find in model systems and tissue that hydrogen exchange from NH and OH groups to water dominates the low frequency water T1ρdispersion, in the context of the model used to interpret the relaxation data. Further, low frequency dispersion changes are correlated with loss of proteoglycan from the extra-cellular matrix of articular cartilage. This finding has significance for the noninvasive detection of matrix degradation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11606754</pmid><doi>10.1073/pnas.221471898</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (22), p.12479-12484 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_18111494 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Arthritis Biological Sciences Biology Cartilage Cartilage, Articular - metabolism Cattle Chemical equilibrium Collagen - metabolism Collagens Exchange rates glycosaminoglycans Hydroxyls Low frequencies Magnetic Resonance Spectroscopy Molecular Sequence Data Molecules Osteoporosis Physics Proteoglycans - metabolism Protons Rotation Ungulates Water |
title | Water Magnetic Relaxation Dispersion in Biological Systems: The Contribution of Proton Exchange and Implications for the Noninvasive Detection of Cartilage Degradation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Magnetic%20Relaxation%20Dispersion%20in%20Biological%20Systems:%20The%20Contribution%20of%20Proton%20Exchange%20and%20Implications%20for%20the%20Noninvasive%20Detection%20of%20Cartilage%20Degradation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Duvvuri,%20Umamaheswar&rft.date=2001-10-23&rft.volume=98&rft.issue=22&rft.spage=12479&rft.epage=12484&rft.pages=12479-12484&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.221471898&rft_dat=%3Cjstor_proqu%3E3056931%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201393969&rft_id=info:pmid/11606754&rft_jstor_id=3056931&rfr_iscdi=true |