Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing

The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of experiments is described with a variety of squall-like wind st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical oceanography 1999-03, Vol.29 (3), p.519-529
Hauptverfasser: RICHARDSON, R. A, SUTYRIN, G. G, HEBERT, D, ROTHSTEIN, L. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 529
container_issue 3
container_start_page 519
container_title Journal of physical oceanography
container_volume 29
creator RICHARDSON, R. A
SUTYRIN, G. G
HEBERT, D
ROTHSTEIN, L. M
description The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of experiments is described with a variety of squall-like wind stress distributions and linear initial stratification in the ocean. Several physical regimes of turbulent mixing and decay during and after wind forcing are described. Differences in the structure of the upper and lower parts of the mixing layer are analyzed. The results indicate an exponential decay of turbulent kinetic energy (TKE) with time after surface forcing is removed, and TKE source terms continue to play an important role. The velocity and density structure after the squall are found to be universal, with a nearly constant Richardson number throughout the mixing layer. It is demonstrated that this implies that the mixed layer depth is determined by the initial buoyancy frequency and total momentum input from the wind stress in the same manner as in the bulk mixed layer models. It does not depend essentially on the squall duration or the time evolution of the wind stress during the squall.
doi_str_mv 10.1175/1520-0485(1999)029<0519:UOTMSS>2.0.CO;2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18107406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17223070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-4e4d4ae35649758224cd217087a84adcc2c5caaef6375b88a6fd37aee9e68c463</originalsourceid><addsrcrecordid>eNqNkU1P3DAQhq0KpC60_8FCVUUPWcaO4w9AldCqpUiL9rDs2XKdCQRl42Anrfbfk2ihSD1xmsM8845mHkLOGMwZU8UZKzhkIHRxyowx34CbSyiYOd-s7m7X6-98DvPF6oJ_ILN_5AGZAXCe5VLBR3KU0iMASMbNjPhNW__BmFxT9zsaKto_IN2GEhssadq6psmSdw3SiKkLbcJXZug6jLSPoavHPg0eXUv7QNPTMA7Rv3Vb0ipEX7f3n8hh5ZqEn1_qMdn8_HG3-JUtV9c3i6tl5gVAnwkUpXCYF1IYVWjOhS85U6CV08KV3nNfeOewkrkqfmvtZFXmyiEalNoLmR-Tr_vcLoanAVNvt3Xy2DSuxTAkyzQDJeAdoOI8BwUjePIf-BiG2I5H2JEwQkipRuh6D_kYUopY2S7WWxd3loGdlNlJhJ1E2EmZHZXZSZndK7Pcgl2sLB-Tvrysc9PTq-haX6e3OMWV0TJ_BtgCmqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223944667</pqid></control><display><type>article</type><title>Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>RICHARDSON, R. A ; SUTYRIN, G. G ; HEBERT, D ; ROTHSTEIN, L. M</creator><creatorcontrib>RICHARDSON, R. A ; SUTYRIN, G. G ; HEBERT, D ; ROTHSTEIN, L. M</creatorcontrib><description>The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of experiments is described with a variety of squall-like wind stress distributions and linear initial stratification in the ocean. Several physical regimes of turbulent mixing and decay during and after wind forcing are described. Differences in the structure of the upper and lower parts of the mixing layer are analyzed. The results indicate an exponential decay of turbulent kinetic energy (TKE) with time after surface forcing is removed, and TKE source terms continue to play an important role. The velocity and density structure after the squall are found to be universal, with a nearly constant Richardson number throughout the mixing layer. It is demonstrated that this implies that the mixed layer depth is determined by the initial buoyancy frequency and total momentum input from the wind stress in the same manner as in the bulk mixed layer models. It does not depend essentially on the squall duration or the time evolution of the wind stress during the squall.</description><identifier>ISSN: 0022-3670</identifier><identifier>EISSN: 1520-0485</identifier><identifier>DOI: 10.1175/1520-0485(1999)029&lt;0519:UOTMSS&gt;2.0.CO;2</identifier><identifier>CODEN: JPYOBT</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Oceanography ; Oceans ; Physics of the oceans ; Sea-air exchange processes ; Upper ocean ; Wind</subject><ispartof>Journal of physical oceanography, 1999-03, Vol.29 (3), p.519-529</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Meteorological Society Mar 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3682,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1727986$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RICHARDSON, R. A</creatorcontrib><creatorcontrib>SUTYRIN, G. G</creatorcontrib><creatorcontrib>HEBERT, D</creatorcontrib><creatorcontrib>ROTHSTEIN, L. M</creatorcontrib><title>Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing</title><title>Journal of physical oceanography</title><description>The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of experiments is described with a variety of squall-like wind stress distributions and linear initial stratification in the ocean. Several physical regimes of turbulent mixing and decay during and after wind forcing are described. Differences in the structure of the upper and lower parts of the mixing layer are analyzed. The results indicate an exponential decay of turbulent kinetic energy (TKE) with time after surface forcing is removed, and TKE source terms continue to play an important role. The velocity and density structure after the squall are found to be universal, with a nearly constant Richardson number throughout the mixing layer. It is demonstrated that this implies that the mixed layer depth is determined by the initial buoyancy frequency and total momentum input from the wind stress in the same manner as in the bulk mixed layer models. It does not depend essentially on the squall duration or the time evolution of the wind stress during the squall.</description><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><subject>Sea-air exchange processes</subject><subject>Upper ocean</subject><subject>Wind</subject><issn>0022-3670</issn><issn>1520-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1P3DAQhq0KpC60_8FCVUUPWcaO4w9AldCqpUiL9rDs2XKdCQRl42Anrfbfk2ihSD1xmsM8845mHkLOGMwZU8UZKzhkIHRxyowx34CbSyiYOd-s7m7X6-98DvPF6oJ_ILN_5AGZAXCe5VLBR3KU0iMASMbNjPhNW__BmFxT9zsaKto_IN2GEhssadq6psmSdw3SiKkLbcJXZug6jLSPoavHPg0eXUv7QNPTMA7Rv3Vb0ipEX7f3n8hh5ZqEn1_qMdn8_HG3-JUtV9c3i6tl5gVAnwkUpXCYF1IYVWjOhS85U6CV08KV3nNfeOewkrkqfmvtZFXmyiEalNoLmR-Tr_vcLoanAVNvt3Xy2DSuxTAkyzQDJeAdoOI8BwUjePIf-BiG2I5H2JEwQkipRuh6D_kYUopY2S7WWxd3loGdlNlJhJ1E2EmZHZXZSZndK7Pcgl2sLB-Tvrysc9PTq-haX6e3OMWV0TJ_BtgCmqo</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>RICHARDSON, R. A</creator><creator>SUTYRIN, G. G</creator><creator>HEBERT, D</creator><creator>ROTHSTEIN, L. M</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19990301</creationdate><title>Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing</title><author>RICHARDSON, R. A ; SUTYRIN, G. G ; HEBERT, D ; ROTHSTEIN, L. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-4e4d4ae35649758224cd217087a84adcc2c5caaef6375b88a6fd37aee9e68c463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><topic>Sea-air exchange processes</topic><topic>Upper ocean</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RICHARDSON, R. A</creatorcontrib><creatorcontrib>SUTYRIN, G. G</creatorcontrib><creatorcontrib>HEBERT, D</creatorcontrib><creatorcontrib>ROTHSTEIN, L. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of physical oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RICHARDSON, R. A</au><au>SUTYRIN, G. G</au><au>HEBERT, D</au><au>ROTHSTEIN, L. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing</atitle><jtitle>Journal of physical oceanography</jtitle><date>1999-03-01</date><risdate>1999</risdate><volume>29</volume><issue>3</issue><spage>519</spage><epage>529</epage><pages>519-529</pages><issn>0022-3670</issn><eissn>1520-0485</eissn><coden>JPYOBT</coden><abstract>The upper ocean response to idealized surface wind forcing that is representative of conditions observed during the TOGA-COARE Intensive Observation Period is studied by numerical simulations using a second-moment closure model. A set of experiments is described with a variety of squall-like wind stress distributions and linear initial stratification in the ocean. Several physical regimes of turbulent mixing and decay during and after wind forcing are described. Differences in the structure of the upper and lower parts of the mixing layer are analyzed. The results indicate an exponential decay of turbulent kinetic energy (TKE) with time after surface forcing is removed, and TKE source terms continue to play an important role. The velocity and density structure after the squall are found to be universal, with a nearly constant Richardson number throughout the mixing layer. It is demonstrated that this implies that the mixed layer depth is determined by the initial buoyancy frequency and total momentum input from the wind stress in the same manner as in the bulk mixed layer models. It does not depend essentially on the squall duration or the time evolution of the wind stress during the squall.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0485(1999)029&lt;0519:UOTMSS&gt;2.0.CO;2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3670
ispartof Journal of physical oceanography, 1999-03, Vol.29 (3), p.519-529
issn 0022-3670
1520-0485
language eng
recordid cdi_proquest_miscellaneous_18107406
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals
subjects Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Oceanography
Oceans
Physics of the oceans
Sea-air exchange processes
Upper ocean
Wind
title Universality of the modeled small-scale response of the upper tropical ocean to squall wind forcing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T00%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20of%20the%20modeled%20small-scale%20response%20of%20the%20upper%20tropical%20ocean%20to%20squall%20wind%20forcing&rft.jtitle=Journal%20of%20physical%20oceanography&rft.au=RICHARDSON,%20R.%20A&rft.date=1999-03-01&rft.volume=29&rft.issue=3&rft.spage=519&rft.epage=529&rft.pages=519-529&rft.issn=0022-3670&rft.eissn=1520-0485&rft.coden=JPYOBT&rft_id=info:doi/10.1175/1520-0485(1999)029%3C0519:UOTMSS%3E2.0.CO;2&rft_dat=%3Cproquest_cross%3E17223070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223944667&rft_id=info:pmid/&rfr_iscdi=true