On the Mechanism of North Atlantic Decadal Variability

North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 1999-07, Vol.12 (7), p.1956-1973
Hauptverfasser: Selten, F. M., Haarsma, R. J., Opsteegh, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1973
container_issue 7
container_start_page 1956
container_title Journal of climate
container_volume 12
creator Selten, F. M.
Haarsma, R. J.
Opsteegh, J. D.
description North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the current climate, the surface temperatures are 2°C warmer in the Tropics to almost 8°C warmer in the polar regions. The covariability between the atmosphere and ocean is explored by performing a singular value decomposition (SVD) of boreal winter SST anomalies and 800-hPa geopotential height anomalies. The first SVD pair shows a red variance spectrum in SST and a white spectrum in 800-hPa height. The second mode shows a peak in both spectra at a timescale of about 16–18 yr. The geopotential height pattern is the model’s equivalent of the North Atlantic oscillation (NAO) pattern; the SST anomaly pattern is a north–south oriented dipole. Additional experiments have revealed that the decadal oscillation in ECBILT is basically an oscillation in the subsurface of the ocean. The oscillation is excited by anomalies in the atmospheric NAO pattern, both through anomalous surface heat fluxes and anomalous Ekman transports. The atmospheric response to the SST anomaly enhances the oscillation and slightly modifies it, but is not essential. The atmospheric response consists primarily of a local surface air temperature adjustment to the SST anomaly. An important element in the physical mechanism of the oscillation is the geostrophic response of the ocean circulation to the forced temperature anomalies creating surface salinity anomalies through anomalous horizontal advection. These salinity anomalies influence the convective activity in the area of the temperature anomaly such as to break down the subsurface temperature anomaly. Both temperature and salinity anomalies slowly propagate eastward at a rate consistent with the mean current.
doi_str_mv 10.1175/1520-0442(1999)012<1956:OTMONA>2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18098759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26244405</jstor_id><sourcerecordid>26244405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-de880a6fa504b1d240e273a780a6bc45f643f3ea3f415d2221d3f28942d444ab3</originalsourceid><addsrcrecordid>eNqFkV1LwzAUhoMoOD9-glBERC86T06TtlERxvyEbb2Z3oYsTVhH12rSXfjvTZkoeOPVgZwn5z3nfQm5ojCkNONXlCPEwBheUCHEJVC8pYKn18V8WsxGdziE4bi4wR0y-CF3yQByweI843yfHHi_gvAtBRiQtGiibmmiqdFL1VR-HbU2mrWuW0ajrlZNV-no3mhVqjp6U65Si6quus8jsmdV7c3xdz0kr48P8_FzPCmeXsajSawZYheXJs9BpVZxYAtaIgODWaKy_nGhGbcpS2xiVGIZ5SUi0jKxGFbFkjGmFskhOd_OfXftx8b4Tq4rr00dNjPtxkuagwhXif_BLOVIEwzg6R9w1W5cE46QQV8gBc4C9LSFtGu9d8bKd1etlfuUFGSfguy9lb23sk9BBjtln4LcpiBRghwXspc7-5ZTXqvaOtXoyv-OE5gKngfsZIutfNe6nzamGHwAnnwBA6WRew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222921054</pqid></control><display><type>article</type><title>On the Mechanism of North Atlantic Decadal Variability</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Selten, F. M. ; Haarsma, R. J. ; Opsteegh, J. D.</creator><creatorcontrib>Selten, F. M. ; Haarsma, R. J. ; Opsteegh, J. D.</creatorcontrib><description>North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the current climate, the surface temperatures are 2°C warmer in the Tropics to almost 8°C warmer in the polar regions. The covariability between the atmosphere and ocean is explored by performing a singular value decomposition (SVD) of boreal winter SST anomalies and 800-hPa geopotential height anomalies. The first SVD pair shows a red variance spectrum in SST and a white spectrum in 800-hPa height. The second mode shows a peak in both spectra at a timescale of about 16–18 yr. The geopotential height pattern is the model’s equivalent of the North Atlantic oscillation (NAO) pattern; the SST anomaly pattern is a north–south oriented dipole. Additional experiments have revealed that the decadal oscillation in ECBILT is basically an oscillation in the subsurface of the ocean. The oscillation is excited by anomalies in the atmospheric NAO pattern, both through anomalous surface heat fluxes and anomalous Ekman transports. The atmospheric response to the SST anomaly enhances the oscillation and slightly modifies it, but is not essential. The atmospheric response consists primarily of a local surface air temperature adjustment to the SST anomaly. An important element in the physical mechanism of the oscillation is the geostrophic response of the ocean circulation to the forced temperature anomalies creating surface salinity anomalies through anomalous horizontal advection. These salinity anomalies influence the convective activity in the area of the temperature anomaly such as to break down the subsurface temperature anomaly. Both temperature and salinity anomalies slowly propagate eastward at a rate consistent with the mean current.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(1999)012&lt;1956:OTMONA&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Atmospheric circulation ; Atmospheric models ; Atmospherics ; Climate ; Climate models ; Climate variability ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Marine ; Noise spectra ; Ocean currents ; Ocean temperature ; Oceans ; Physics of the oceans ; Salinity ; Sea ice ; Sea-air exchange processes ; Statistical variance ; Temperature ; Time series</subject><ispartof>Journal of climate, 1999-07, Vol.12 (7), p.1956-1973</ispartof><rights>1999 American Meteorological Society</rights><rights>1999 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jul 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26244405$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26244405$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1926958$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Selten, F. M.</creatorcontrib><creatorcontrib>Haarsma, R. J.</creatorcontrib><creatorcontrib>Opsteegh, J. D.</creatorcontrib><title>On the Mechanism of North Atlantic Decadal Variability</title><title>Journal of climate</title><description>North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the current climate, the surface temperatures are 2°C warmer in the Tropics to almost 8°C warmer in the polar regions. The covariability between the atmosphere and ocean is explored by performing a singular value decomposition (SVD) of boreal winter SST anomalies and 800-hPa geopotential height anomalies. The first SVD pair shows a red variance spectrum in SST and a white spectrum in 800-hPa height. The second mode shows a peak in both spectra at a timescale of about 16–18 yr. The geopotential height pattern is the model’s equivalent of the North Atlantic oscillation (NAO) pattern; the SST anomaly pattern is a north–south oriented dipole. Additional experiments have revealed that the decadal oscillation in ECBILT is basically an oscillation in the subsurface of the ocean. The oscillation is excited by anomalies in the atmospheric NAO pattern, both through anomalous surface heat fluxes and anomalous Ekman transports. The atmospheric response to the SST anomaly enhances the oscillation and slightly modifies it, but is not essential. The atmospheric response consists primarily of a local surface air temperature adjustment to the SST anomaly. An important element in the physical mechanism of the oscillation is the geostrophic response of the ocean circulation to the forced temperature anomalies creating surface salinity anomalies through anomalous horizontal advection. These salinity anomalies influence the convective activity in the area of the temperature anomaly such as to break down the subsurface temperature anomaly. Both temperature and salinity anomalies slowly propagate eastward at a rate consistent with the mean current.</description><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Marine</subject><subject>Noise spectra</subject><subject>Ocean currents</subject><subject>Ocean temperature</subject><subject>Oceans</subject><subject>Physics of the oceans</subject><subject>Salinity</subject><subject>Sea ice</subject><subject>Sea-air exchange processes</subject><subject>Statistical variance</subject><subject>Temperature</subject><subject>Time series</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV1LwzAUhoMoOD9-glBERC86T06TtlERxvyEbb2Z3oYsTVhH12rSXfjvTZkoeOPVgZwn5z3nfQm5ojCkNONXlCPEwBheUCHEJVC8pYKn18V8WsxGdziE4bi4wR0y-CF3yQByweI843yfHHi_gvAtBRiQtGiibmmiqdFL1VR-HbU2mrWuW0ajrlZNV-no3mhVqjp6U65Si6quus8jsmdV7c3xdz0kr48P8_FzPCmeXsajSawZYheXJs9BpVZxYAtaIgODWaKy_nGhGbcpS2xiVGIZ5SUi0jKxGFbFkjGmFskhOd_OfXftx8b4Tq4rr00dNjPtxkuagwhXif_BLOVIEwzg6R9w1W5cE46QQV8gBc4C9LSFtGu9d8bKd1etlfuUFGSfguy9lb23sk9BBjtln4LcpiBRghwXspc7-5ZTXqvaOtXoyv-OE5gKngfsZIutfNe6nzamGHwAnnwBA6WRew</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Selten, F. M.</creator><creator>Haarsma, R. J.</creator><creator>Opsteegh, J. D.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>19990701</creationdate><title>On the Mechanism of North Atlantic Decadal Variability</title><author>Selten, F. M. ; Haarsma, R. J. ; Opsteegh, J. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-de880a6fa504b1d240e273a780a6bc45f643f3ea3f415d2221d3f28942d444ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Marine</topic><topic>Noise spectra</topic><topic>Ocean currents</topic><topic>Ocean temperature</topic><topic>Oceans</topic><topic>Physics of the oceans</topic><topic>Salinity</topic><topic>Sea ice</topic><topic>Sea-air exchange processes</topic><topic>Statistical variance</topic><topic>Temperature</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selten, F. M.</creatorcontrib><creatorcontrib>Haarsma, R. J.</creatorcontrib><creatorcontrib>Opsteegh, J. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selten, F. M.</au><au>Haarsma, R. J.</au><au>Opsteegh, J. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Mechanism of North Atlantic Decadal Variability</atitle><jtitle>Journal of climate</jtitle><date>1999-07-01</date><risdate>1999</risdate><volume>12</volume><issue>7</issue><spage>1956</spage><epage>1973</epage><pages>1956-1973</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>North Atlantic decadal climate variability is studied with a coupled atmosphere–ocean–sea ice model (ECBILT). After having reached an approximate statistical equilibrium in coupled mode without applying flux corrections, a subsequent 1000-yr integration is performed and analyzed. Compared to the current climate, the surface temperatures are 2°C warmer in the Tropics to almost 8°C warmer in the polar regions. The covariability between the atmosphere and ocean is explored by performing a singular value decomposition (SVD) of boreal winter SST anomalies and 800-hPa geopotential height anomalies. The first SVD pair shows a red variance spectrum in SST and a white spectrum in 800-hPa height. The second mode shows a peak in both spectra at a timescale of about 16–18 yr. The geopotential height pattern is the model’s equivalent of the North Atlantic oscillation (NAO) pattern; the SST anomaly pattern is a north–south oriented dipole. Additional experiments have revealed that the decadal oscillation in ECBILT is basically an oscillation in the subsurface of the ocean. The oscillation is excited by anomalies in the atmospheric NAO pattern, both through anomalous surface heat fluxes and anomalous Ekman transports. The atmospheric response to the SST anomaly enhances the oscillation and slightly modifies it, but is not essential. The atmospheric response consists primarily of a local surface air temperature adjustment to the SST anomaly. An important element in the physical mechanism of the oscillation is the geostrophic response of the ocean circulation to the forced temperature anomalies creating surface salinity anomalies through anomalous horizontal advection. These salinity anomalies influence the convective activity in the area of the temperature anomaly such as to break down the subsurface temperature anomaly. Both temperature and salinity anomalies slowly propagate eastward at a rate consistent with the mean current.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(1999)012&lt;1956:OTMONA&gt;2.0.CO;2</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 1999-07, Vol.12 (7), p.1956-1973
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_18098759
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Atmosphere
Atmospheric circulation
Atmospheric models
Atmospherics
Climate
Climate models
Climate variability
Earth, ocean, space
Exact sciences and technology
External geophysics
Marine
Noise spectra
Ocean currents
Ocean temperature
Oceans
Physics of the oceans
Salinity
Sea ice
Sea-air exchange processes
Statistical variance
Temperature
Time series
title On the Mechanism of North Atlantic Decadal Variability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Mechanism%20of%20North%20Atlantic%20Decadal%20Variability&rft.jtitle=Journal%20of%20climate&rft.au=Selten,%20F.%20M.&rft.date=1999-07-01&rft.volume=12&rft.issue=7&rft.spage=1956&rft.epage=1973&rft.pages=1956-1973&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(1999)012%3C1956:OTMONA%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26244405%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222921054&rft_id=info:pmid/&rft_jstor_id=26244405&rfr_iscdi=true