Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties
Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solut...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2016-02, Vol.54, p.173-184 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 184 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 54 |
creator | Lieblich, M. Barriuso, S. Multigner, M. González-Doncel, G. González-Carrasco, J.L. |
description | Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.
•Thermal oxidation of blasted Ti6Al4V induces critical microstructural changes.•Residual stress state changes from compressive to tensile at the subsurface.•Fatigue strength of blasted alloy decreases sharply after thermal oxidation.•Grit blasting modifies the crystallographic texture of the blasting affected zone. |
doi_str_mv | 10.1016/j.jmbbm.2015.09.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809635009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616115003690</els_id><sourcerecordid>1809635009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-b92fdb8e93cbb04ee3a7205ef6189fe90705e27efbbede24633964581213beca3</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRAVLYUvQEJesiCpH4kTI7GoqvKQKrEZ2Fq2c63xKI_BdqD9Cn6ZOzOFJaxsX5-H7jmEvOKs5oyrq129m5ybasF4WzNdMymekAved33FeM-e4r1reaW44ufkec47xhRjff-MnAvVtD3n7QX5tdlCmuxIl_s42BKXmS6BTjBEj8NNVNdj84260eYCA_0Zy5Z6SHaKnu5tKtGPkN_R2xDAl0yRXbZA8TctuaTVlzXBW5ogx2FFPZxBzpCpnQc08Vs7H332adkDqkF-Qc6CHTO8fDwvydcPt5ubT9Xdl4-fb67vKi-1KJXTIgyuBy29c6wBkLYTrIWgeK8DaNbhQ3QQnIMBRKOk1MedBZcOvJWX5M1JF62_r5CLmWL2MI52hmXNBgPUSraM6f9DMWWthdYNQuUJetg_Jwhmn-Jk04PhzBxKMztzLM0cSjNMGywNWa8fDVaHyf_l_GkJAe9PAMBEfkRIJvsIs8eWEuZuhiX-0-A3P6-r3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751992994</pqid></control><display><type>article</type><title>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lieblich, M. ; Barriuso, S. ; Multigner, M. ; González-Doncel, G. ; González-Carrasco, J.L.</creator><creatorcontrib>Lieblich, M. ; Barriuso, S. ; Multigner, M. ; González-Doncel, G. ; González-Carrasco, J.L.</creatorcontrib><description>Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.
•Thermal oxidation of blasted Ti6Al4V induces critical microstructural changes.•Residual stress state changes from compressive to tensile at the subsurface.•Fatigue strength of blasted alloy decreases sharply after thermal oxidation.•Grit blasting modifies the crystallographic texture of the blasting affected zone.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2015.09.032</identifier><identifier>PMID: 26458115</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Blasting ; Ceramics - chemistry ; Fatigue strength ; Grit blasting ; Hardness ; Materials Testing ; Microstructural stability ; Oxidation ; Oxidation-Reduction ; Residual stress ; Residual stresses ; Stress, Mechanical ; Surface layer ; Surface Properties ; Surgical implants ; Temperature ; Texture ; Thermal oxidation ; Ti6Al4V ; Titanium - chemistry ; Titanium base alloys</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2016-02, Vol.54, p.173-184</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-b92fdb8e93cbb04ee3a7205ef6189fe90705e27efbbede24633964581213beca3</citedby><cites>FETCH-LOGICAL-c392t-b92fdb8e93cbb04ee3a7205ef6189fe90705e27efbbede24633964581213beca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616115003690$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26458115$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lieblich, M.</creatorcontrib><creatorcontrib>Barriuso, S.</creatorcontrib><creatorcontrib>Multigner, M.</creatorcontrib><creatorcontrib>González-Doncel, G.</creatorcontrib><creatorcontrib>González-Carrasco, J.L.</creatorcontrib><title>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.
•Thermal oxidation of blasted Ti6Al4V induces critical microstructural changes.•Residual stress state changes from compressive to tensile at the subsurface.•Fatigue strength of blasted alloy decreases sharply after thermal oxidation.•Grit blasting modifies the crystallographic texture of the blasting affected zone.</description><subject>Blasting</subject><subject>Ceramics - chemistry</subject><subject>Fatigue strength</subject><subject>Grit blasting</subject><subject>Hardness</subject><subject>Materials Testing</subject><subject>Microstructural stability</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Residual stress</subject><subject>Residual stresses</subject><subject>Stress, Mechanical</subject><subject>Surface layer</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Temperature</subject><subject>Texture</subject><subject>Thermal oxidation</subject><subject>Ti6Al4V</subject><subject>Titanium - chemistry</subject><subject>Titanium base alloys</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRAVLYUvQEJesiCpH4kTI7GoqvKQKrEZ2Fq2c63xKI_BdqD9Cn6ZOzOFJaxsX5-H7jmEvOKs5oyrq129m5ybasF4WzNdMymekAved33FeM-e4r1reaW44ufkec47xhRjff-MnAvVtD3n7QX5tdlCmuxIl_s42BKXmS6BTjBEj8NNVNdj84260eYCA_0Zy5Z6SHaKnu5tKtGPkN_R2xDAl0yRXbZA8TctuaTVlzXBW5ogx2FFPZxBzpCpnQc08Vs7H332adkDqkF-Qc6CHTO8fDwvydcPt5ubT9Xdl4-fb67vKi-1KJXTIgyuBy29c6wBkLYTrIWgeK8DaNbhQ3QQnIMBRKOk1MedBZcOvJWX5M1JF62_r5CLmWL2MI52hmXNBgPUSraM6f9DMWWthdYNQuUJetg_Jwhmn-Jk04PhzBxKMztzLM0cSjNMGywNWa8fDVaHyf_l_GkJAe9PAMBEfkRIJvsIs8eWEuZuhiX-0-A3P6-r3g</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Lieblich, M.</creator><creator>Barriuso, S.</creator><creator>Multigner, M.</creator><creator>González-Doncel, G.</creator><creator>González-Carrasco, J.L.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201602</creationdate><title>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties</title><author>Lieblich, M. ; Barriuso, S. ; Multigner, M. ; González-Doncel, G. ; González-Carrasco, J.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-b92fdb8e93cbb04ee3a7205ef6189fe90705e27efbbede24633964581213beca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Blasting</topic><topic>Ceramics - chemistry</topic><topic>Fatigue strength</topic><topic>Grit blasting</topic><topic>Hardness</topic><topic>Materials Testing</topic><topic>Microstructural stability</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Residual stress</topic><topic>Residual stresses</topic><topic>Stress, Mechanical</topic><topic>Surface layer</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Temperature</topic><topic>Texture</topic><topic>Thermal oxidation</topic><topic>Ti6Al4V</topic><topic>Titanium - chemistry</topic><topic>Titanium base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lieblich, M.</creatorcontrib><creatorcontrib>Barriuso, S.</creatorcontrib><creatorcontrib>Multigner, M.</creatorcontrib><creatorcontrib>González-Doncel, G.</creatorcontrib><creatorcontrib>González-Carrasco, J.L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lieblich, M.</au><au>Barriuso, S.</au><au>Multigner, M.</au><au>González-Doncel, G.</au><au>González-Carrasco, J.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2016-02</date><risdate>2016</risdate><volume>54</volume><spage>173</spage><epage>184</epage><pages>173-184</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.
•Thermal oxidation of blasted Ti6Al4V induces critical microstructural changes.•Residual stress state changes from compressive to tensile at the subsurface.•Fatigue strength of blasted alloy decreases sharply after thermal oxidation.•Grit blasting modifies the crystallographic texture of the blasting affected zone.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26458115</pmid><doi>10.1016/j.jmbbm.2015.09.032</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2016-02, Vol.54, p.173-184 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809635009 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Blasting Ceramics - chemistry Fatigue strength Grit blasting Hardness Materials Testing Microstructural stability Oxidation Oxidation-Reduction Residual stress Residual stresses Stress, Mechanical Surface layer Surface Properties Surgical implants Temperature Texture Thermal oxidation Ti6Al4V Titanium - chemistry Titanium base alloys |
title | Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20oxidation%20of%20medical%20Ti6Al4V%20blasted%20with%20ceramic%20particles:%20Effects%20on%20the%20microstructure,%20residual%20stresses%20and%20mechanical%20properties&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Lieblich,%20M.&rft.date=2016-02&rft.volume=54&rft.spage=173&rft.epage=184&rft.pages=173-184&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2015.09.032&rft_dat=%3Cproquest_cross%3E1809635009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751992994&rft_id=info:pmid/26458115&rft_els_id=S1751616115003690&rfr_iscdi=true |