Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming
The deactivation behavior by crystallite growth of nickel nanoparticles on various supports (carbon nanofibers, zirconia, SiC, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ∼10wt% were prepared by impregnation of carbon nanofibers...
Gespeichert in:
Veröffentlicht in: | Journal of energy chemistry 2016-03, Vol.25 (2), p.289-296 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | 2 |
container_start_page | 289 |
container_title | Journal of energy chemistry |
container_volume | 25 |
creator | van Haasterecht, Tomas Swart, Marten de Jong, Krijn P. Bitter, Johannes Hendrik |
description | The deactivation behavior by crystallite growth of nickel nanoparticles on various supports (carbon nanofibers, zirconia, SiC, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ∼10wt% were prepared by impregnation of carbon nanofibers (CNF), ZrO2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF∼ZrO2>SiC>γ-Al2O3>>α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles (∼12nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size (∼20nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
The extent of nickel particle growth was found to be related to the initial nickel particle size and small nickel particles supported on α-Al2O3 can outgrow nickel particles with a larger particle size. [Display omitted] |
doi_str_mv | 10.1016/j.jechem.2016.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809634421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2095495616000073</els_id><sourcerecordid>1809634421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-3e133f906aca887634c948960290a9c2ff4f94132ab65855eab2fc8ca6364ee3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRbcAiSjkDyhc0uzi15p1g4Si8JAi0aS3HGdMvHgf2A5S-Hq82tRMM5rRnas7pyjuCK4IJuKhrVowR-gqmqcKkwpjcVUsKJZ1yWUtbopVjC3OJTmhsl4UZmMtmIQGi1zvktMe9c58gUejDskZDyi6X0BDj2LSe-ddOk_ii8jopP05pojsEJD-PsFwimg86ggoQN51rv-8La6t9hFWl74sdi-b3fqt3H68vq-ft6VhTKaSAWHMSiy00U3zKBg3kjdSYCqxloZay22Ozajei7qpa9B7ak1jtGCCA7BlcT_bjmHIQWJSnYsGvNf9lEqRBstsyinJUj5LTRhizEHVGFynw1kRrCaSqlUzSTWRVJioTDKfPc1nkL_4cRBUNA56AwcXMkR1GNz_Bn_qQYEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809634421</pqid></control><display><type>article</type><title>Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming</title><source>Alma/SFX Local Collection</source><creator>van Haasterecht, Tomas ; Swart, Marten ; de Jong, Krijn P. ; Bitter, Johannes Hendrik</creator><creatorcontrib>van Haasterecht, Tomas ; Swart, Marten ; de Jong, Krijn P. ; Bitter, Johannes Hendrik</creatorcontrib><description>The deactivation behavior by crystallite growth of nickel nanoparticles on various supports (carbon nanofibers, zirconia, SiC, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ∼10wt% were prepared by impregnation of carbon nanofibers (CNF), ZrO2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF∼ZrO2>SiC>γ-Al2O3>>α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles (∼12nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size (∼20nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
The extent of nickel particle growth was found to be related to the initial nickel particle size and small nickel particles supported on α-Al2O3 can outgrow nickel particles with a larger particle size. [Display omitted]</description><identifier>ISSN: 2095-4956</identifier><identifier>DOI: 10.1016/j.jechem.2016.01.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aqueous phase reforming ; Carbon fibers ; Catalysis ; Catalyst stability ; Catalysts ; Leaching ; Nanoparticles ; Nickel ; Nickel catalysts ; Ostwald ripening ; Particle growth ; Particle size distribution ; Particle size effect ; Silicon carbide ; Support effect ; Zirconium dioxide</subject><ispartof>Journal of energy chemistry, 2016-03, Vol.25 (2), p.289-296</ispartof><rights>2016 Science Press and Dalian Institute of Chemical Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-3e133f906aca887634c948960290a9c2ff4f94132ab65855eab2fc8ca6364ee3</citedby><cites>FETCH-LOGICAL-c339t-3e133f906aca887634c948960290a9c2ff4f94132ab65855eab2fc8ca6364ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>van Haasterecht, Tomas</creatorcontrib><creatorcontrib>Swart, Marten</creatorcontrib><creatorcontrib>de Jong, Krijn P.</creatorcontrib><creatorcontrib>Bitter, Johannes Hendrik</creatorcontrib><title>Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming</title><title>Journal of energy chemistry</title><description>The deactivation behavior by crystallite growth of nickel nanoparticles on various supports (carbon nanofibers, zirconia, SiC, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ∼10wt% were prepared by impregnation of carbon nanofibers (CNF), ZrO2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF∼ZrO2>SiC>γ-Al2O3>>α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles (∼12nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size (∼20nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
The extent of nickel particle growth was found to be related to the initial nickel particle size and small nickel particles supported on α-Al2O3 can outgrow nickel particles with a larger particle size. [Display omitted]</description><subject>Aqueous phase reforming</subject><subject>Carbon fibers</subject><subject>Catalysis</subject><subject>Catalyst stability</subject><subject>Catalysts</subject><subject>Leaching</subject><subject>Nanoparticles</subject><subject>Nickel</subject><subject>Nickel catalysts</subject><subject>Ostwald ripening</subject><subject>Particle growth</subject><subject>Particle size distribution</subject><subject>Particle size effect</subject><subject>Silicon carbide</subject><subject>Support effect</subject><subject>Zirconium dioxide</subject><issn>2095-4956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRbcAiSjkDyhc0uzi15p1g4Si8JAi0aS3HGdMvHgf2A5S-Hq82tRMM5rRnas7pyjuCK4IJuKhrVowR-gqmqcKkwpjcVUsKJZ1yWUtbopVjC3OJTmhsl4UZmMtmIQGi1zvktMe9c58gUejDskZDyi6X0BDj2LSe-ddOk_ii8jopP05pojsEJD-PsFwimg86ggoQN51rv-8La6t9hFWl74sdi-b3fqt3H68vq-ft6VhTKaSAWHMSiy00U3zKBg3kjdSYCqxloZay22Ozajei7qpa9B7ak1jtGCCA7BlcT_bjmHIQWJSnYsGvNf9lEqRBstsyinJUj5LTRhizEHVGFynw1kRrCaSqlUzSTWRVJioTDKfPc1nkL_4cRBUNA56AwcXMkR1GNz_Bn_qQYEY</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>van Haasterecht, Tomas</creator><creator>Swart, Marten</creator><creator>de Jong, Krijn P.</creator><creator>Bitter, Johannes Hendrik</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201603</creationdate><title>Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming</title><author>van Haasterecht, Tomas ; Swart, Marten ; de Jong, Krijn P. ; Bitter, Johannes Hendrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-3e133f906aca887634c948960290a9c2ff4f94132ab65855eab2fc8ca6364ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aqueous phase reforming</topic><topic>Carbon fibers</topic><topic>Catalysis</topic><topic>Catalyst stability</topic><topic>Catalysts</topic><topic>Leaching</topic><topic>Nanoparticles</topic><topic>Nickel</topic><topic>Nickel catalysts</topic><topic>Ostwald ripening</topic><topic>Particle growth</topic><topic>Particle size distribution</topic><topic>Particle size effect</topic><topic>Silicon carbide</topic><topic>Support effect</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Haasterecht, Tomas</creatorcontrib><creatorcontrib>Swart, Marten</creatorcontrib><creatorcontrib>de Jong, Krijn P.</creatorcontrib><creatorcontrib>Bitter, Johannes Hendrik</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of energy chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Haasterecht, Tomas</au><au>Swart, Marten</au><au>de Jong, Krijn P.</au><au>Bitter, Johannes Hendrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming</atitle><jtitle>Journal of energy chemistry</jtitle><date>2016-03</date><risdate>2016</risdate><volume>25</volume><issue>2</issue><spage>289</spage><epage>296</epage><pages>289-296</pages><issn>2095-4956</issn><abstract>The deactivation behavior by crystallite growth of nickel nanoparticles on various supports (carbon nanofibers, zirconia, SiC, α-Al2O3 and γ-Al2O3) was investigated in the aqueous phase reforming of ethylene glycol. Supported Ni catalysts of ∼10wt% were prepared by impregnation of carbon nanofibers (CNF), ZrO2, SiC, γ-Al2O3 and α-Al2O3. The extent of the Ni nanoparticle growth on various support materials follows the order CNF∼ZrO2>SiC>γ-Al2O3>>α-Al2O3 which sequence, however, was determined by the initial Ni particle size. Based on the observed nickel leaching and the specific growth characteristics; the particle size distribution and the effect of loading on the growth rate, Ostwald ripening is suggested to be the main mechanism contributing to nickel particle growth. Remarkably, initially smaller Ni particles (∼12nm) supported on α-Al2O3 were found to outgrow Ni particles with initially larger size (∼20nm). It is put forward that the higher susceptibility with respect to oxidation of the smaller Ni nanoparticles and differences in initial particle size distribution are responsible for this behavior.
The extent of nickel particle growth was found to be related to the initial nickel particle size and small nickel particles supported on α-Al2O3 can outgrow nickel particles with a larger particle size. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jechem.2016.01.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-4956 |
ispartof | Journal of energy chemistry, 2016-03, Vol.25 (2), p.289-296 |
issn | 2095-4956 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809634421 |
source | Alma/SFX Local Collection |
subjects | Aqueous phase reforming Carbon fibers Catalysis Catalyst stability Catalysts Leaching Nanoparticles Nickel Nickel catalysts Ostwald ripening Particle growth Particle size distribution Particle size effect Silicon carbide Support effect Zirconium dioxide |
title | Effect of initial nickel particle size on stability of nickel catalysts for aqueous phase reforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20initial%20nickel%20particle%20size%20on%20stability%20of%20nickel%20catalysts%20for%20aqueous%20phase%20reforming&rft.jtitle=Journal%20of%20energy%20chemistry&rft.au=van%20Haasterecht,%20Tomas&rft.date=2016-03&rft.volume=25&rft.issue=2&rft.spage=289&rft.epage=296&rft.pages=289-296&rft.issn=2095-4956&rft_id=info:doi/10.1016/j.jechem.2016.01.006&rft_dat=%3Cproquest_cross%3E1809634421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809634421&rft_id=info:pmid/&rft_els_id=S2095495616000073&rfr_iscdi=true |