On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation
Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (1...
Gespeichert in:
Veröffentlicht in: | Geochimica et cosmochimica acta 2016-04, Vol.178, p.195-209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | |
container_start_page | 195 |
container_title | Geochimica et cosmochimica acta |
container_volume | 178 |
creator | Berninger, Ulf-Niklas Jordan, Guntram Lindner, Michael Reul, Alexander Schott, Jacques Oelkers, Eric H. |
description | Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure. |
doi_str_mv | 10.1016/j.gca.2016.01.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809629578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703716000454</els_id><sourcerecordid>1790930951</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoO44LjuA-wtRy89VjqTTgdPMvhnYWEveg7V6eqZDN3JmGQVwcO-g2_ok5hmPCsUJFR9v4KvPsZuBWwFiO7NaXtwuG3rdwuilnnGNqLXbWOUlM_ZBuqk0SD1C_Yy5xMAaKVgw34-BF6OxGmayBUeJ45fHyk-Zr5HHgNf8BAo-0L8kOL3cuS_n37xu5D94Vi4DyXyktBVfqaFwto6-sEXX9G6y2EaYsBKLz5QwpmfEzl_9gVXySt2NeGc6ebve82-fHj_ef-puX_4eLd_d9-g7LvSOO1g0BKNHATtdiQ0wg4H0_adQyOwG5UR3W4YWyWdGJVzhNiOQz-C7Afl5DV7fdl7TrG6y8UuPjuaZwyrVSt6MF1rlO7_L9UGjASjRJWKi9SlmHOiyZ6TXzD9sALsGoo92RqKXUOxIGqZyry9MFTtfvOUbHaegqPR18MUO0b_D_oPo8uXOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790930951</pqid></control><display><type>article</type><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><source>Elsevier ScienceDirect Journals</source><creator>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</creator><creatorcontrib>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</creatorcontrib><description>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2016.01.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fluid dynamics ; Fluid flow ; Fluids ; Magnesite ; Magnesium carbonate ; Nucleation ; Saturation ; Spirals</subject><ispartof>Geochimica et cosmochimica acta, 2016-04, Vol.178, p.195-209</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</citedby><cites>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2016.01.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Berninger, Ulf-Niklas</creatorcontrib><creatorcontrib>Jordan, Guntram</creatorcontrib><creatorcontrib>Lindner, Michael</creatorcontrib><creatorcontrib>Reul, Alexander</creatorcontrib><creatorcontrib>Schott, Jacques</creatorcontrib><creatorcontrib>Oelkers, Eric H.</creatorcontrib><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><title>Geochimica et cosmochimica acta</title><description>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</description><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Magnesite</subject><subject>Magnesium carbonate</subject><subject>Nucleation</subject><subject>Saturation</subject><subject>Spirals</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoO44LjuA-wtRy89VjqTTgdPMvhnYWEveg7V6eqZDN3JmGQVwcO-g2_ok5hmPCsUJFR9v4KvPsZuBWwFiO7NaXtwuG3rdwuilnnGNqLXbWOUlM_ZBuqk0SD1C_Yy5xMAaKVgw34-BF6OxGmayBUeJ45fHyk-Zr5HHgNf8BAo-0L8kOL3cuS_n37xu5D94Vi4DyXyktBVfqaFwto6-sEXX9G6y2EaYsBKLz5QwpmfEzl_9gVXySt2NeGc6ebve82-fHj_ef-puX_4eLd_d9-g7LvSOO1g0BKNHATtdiQ0wg4H0_adQyOwG5UR3W4YWyWdGJVzhNiOQz-C7Afl5DV7fdl7TrG6y8UuPjuaZwyrVSt6MF1rlO7_L9UGjASjRJWKi9SlmHOiyZ6TXzD9sALsGoo92RqKXUOxIGqZyry9MFTtfvOUbHaegqPR18MUO0b_D_oPo8uXOQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Berninger, Ulf-Niklas</creator><creator>Jordan, Guntram</creator><creator>Lindner, Michael</creator><creator>Reul, Alexander</creator><creator>Schott, Jacques</creator><creator>Oelkers, Eric H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><author>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Magnesite</topic><topic>Magnesium carbonate</topic><topic>Nucleation</topic><topic>Saturation</topic><topic>Spirals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berninger, Ulf-Niklas</creatorcontrib><creatorcontrib>Jordan, Guntram</creatorcontrib><creatorcontrib>Lindner, Michael</creatorcontrib><creatorcontrib>Reul, Alexander</creatorcontrib><creatorcontrib>Schott, Jacques</creatorcontrib><creatorcontrib>Oelkers, Eric H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berninger, Ulf-Niklas</au><au>Jordan, Guntram</au><au>Lindner, Michael</au><au>Reul, Alexander</au><au>Schott, Jacques</au><au>Oelkers, Eric H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>178</volume><spage>195</spage><epage>209</epage><pages>195-209</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2016.01.019</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7037 |
ispartof | Geochimica et cosmochimica acta, 2016-04, Vol.178, p.195-209 |
issn | 0016-7037 1872-9533 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809629578 |
source | Elsevier ScienceDirect Journals |
subjects | Fluid dynamics Fluid flow Fluids Magnesite Magnesium carbonate Nucleation Saturation Spirals |
title | On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effect%20of%20aqueous%20Ca%20on%20magnesite%20growth%20%E2%80%93%20Insight%20into%20trace%20element%20inhibition%20of%20carbonate%20mineral%20precipitation&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Berninger,%20Ulf-Niklas&rft.date=2016-04-01&rft.volume=178&rft.spage=195&rft.epage=209&rft.pages=195-209&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2016.01.019&rft_dat=%3Cproquest_cross%3E1790930951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790930951&rft_id=info:pmid/&rft_els_id=S0016703716000454&rfr_iscdi=true |