On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation

Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2016-04, Vol.178, p.195-209
Hauptverfasser: Berninger, Ulf-Niklas, Jordan, Guntram, Lindner, Michael, Reul, Alexander, Schott, Jacques, Oelkers, Eric H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue
container_start_page 195
container_title Geochimica et cosmochimica acta
container_volume 178
creator Berninger, Ulf-Niklas
Jordan, Guntram
Lindner, Michael
Reul, Alexander
Schott, Jacques
Oelkers, Eric H.
description Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.
doi_str_mv 10.1016/j.gca.2016.01.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809629578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016703716000454</els_id><sourcerecordid>1790930951</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxoO44LjuA-wtRy89VjqTTgdPMvhnYWEveg7V6eqZDN3JmGQVwcO-g2_ok5hmPCsUJFR9v4KvPsZuBWwFiO7NaXtwuG3rdwuilnnGNqLXbWOUlM_ZBuqk0SD1C_Yy5xMAaKVgw34-BF6OxGmayBUeJ45fHyk-Zr5HHgNf8BAo-0L8kOL3cuS_n37xu5D94Vi4DyXyktBVfqaFwto6-sEXX9G6y2EaYsBKLz5QwpmfEzl_9gVXySt2NeGc6ebve82-fHj_ef-puX_4eLd_d9-g7LvSOO1g0BKNHATtdiQ0wg4H0_adQyOwG5UR3W4YWyWdGJVzhNiOQz-C7Afl5DV7fdl7TrG6y8UuPjuaZwyrVSt6MF1rlO7_L9UGjASjRJWKi9SlmHOiyZ6TXzD9sALsGoo92RqKXUOxIGqZyry9MFTtfvOUbHaegqPR18MUO0b_D_oPo8uXOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790930951</pqid></control><display><type>article</type><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><source>Elsevier ScienceDirect Journals</source><creator>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</creator><creatorcontrib>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</creatorcontrib><description>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2016.01.019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fluid dynamics ; Fluid flow ; Fluids ; Magnesite ; Magnesium carbonate ; Nucleation ; Saturation ; Spirals</subject><ispartof>Geochimica et cosmochimica acta, 2016-04, Vol.178, p.195-209</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</citedby><cites>FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2016.01.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Berninger, Ulf-Niklas</creatorcontrib><creatorcontrib>Jordan, Guntram</creatorcontrib><creatorcontrib>Lindner, Michael</creatorcontrib><creatorcontrib>Reul, Alexander</creatorcontrib><creatorcontrib>Schott, Jacques</creatorcontrib><creatorcontrib>Oelkers, Eric H.</creatorcontrib><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><title>Geochimica et cosmochimica acta</title><description>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</description><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Magnesite</subject><subject>Magnesium carbonate</subject><subject>Nucleation</subject><subject>Saturation</subject><subject>Spirals</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxoO44LjuA-wtRy89VjqTTgdPMvhnYWEveg7V6eqZDN3JmGQVwcO-g2_ok5hmPCsUJFR9v4KvPsZuBWwFiO7NaXtwuG3rdwuilnnGNqLXbWOUlM_ZBuqk0SD1C_Yy5xMAaKVgw34-BF6OxGmayBUeJ45fHyk-Zr5HHgNf8BAo-0L8kOL3cuS_n37xu5D94Vi4DyXyktBVfqaFwto6-sEXX9G6y2EaYsBKLz5QwpmfEzl_9gVXySt2NeGc6ebve82-fHj_ef-puX_4eLd_d9-g7LvSOO1g0BKNHATtdiQ0wg4H0_adQyOwG5UR3W4YWyWdGJVzhNiOQz-C7Afl5DV7fdl7TrG6y8UuPjuaZwyrVSt6MF1rlO7_L9UGjASjRJWKi9SlmHOiyZ6TXzD9sALsGoo92RqKXUOxIGqZyry9MFTtfvOUbHaegqPR18MUO0b_D_oPo8uXOQ</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Berninger, Ulf-Niklas</creator><creator>Jordan, Guntram</creator><creator>Lindner, Michael</creator><creator>Reul, Alexander</creator><creator>Schott, Jacques</creator><creator>Oelkers, Eric H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160401</creationdate><title>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</title><author>Berninger, Ulf-Niklas ; Jordan, Guntram ; Lindner, Michael ; Reul, Alexander ; Schott, Jacques ; Oelkers, Eric H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-c7c0b73a93b1e44e17a04ab9286ca91a6d59164bd253c1d5cceaa2db8d038b5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Magnesite</topic><topic>Magnesium carbonate</topic><topic>Nucleation</topic><topic>Saturation</topic><topic>Spirals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berninger, Ulf-Niklas</creatorcontrib><creatorcontrib>Jordan, Guntram</creatorcontrib><creatorcontrib>Lindner, Michael</creatorcontrib><creatorcontrib>Reul, Alexander</creatorcontrib><creatorcontrib>Schott, Jacques</creatorcontrib><creatorcontrib>Oelkers, Eric H.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berninger, Ulf-Niklas</au><au>Jordan, Guntram</au><au>Lindner, Michael</au><au>Reul, Alexander</au><au>Schott, Jacques</au><au>Oelkers, Eric H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>178</volume><spage>195</spage><epage>209</epage><pages>195-209</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>Motivated by the strong effect of aqueous Mg on calcite growth rates, this study used hydrothermal atomic force microscopy (HAFM) and hydrothermal mixed-flow reactor (HMFR) experiments to explore the effect of aqueous Ca on magnesite growth kinetics at 100°C and pH ∼7.7. Obtuse step velocities on (104) surfaces during magnesite growth were measured to be 4±3nm/s at fluid saturation states, equal to the ion activity quotient divided by the equilibrium constant for the magnesite hydrolysis reaction, of 86–117. These rates do not vary systematically with aqueous Ca concentration up to 3×10−3mol/kg. Magnesite growth rates determined by HAFM are found to be negligibly affected by the presence of aqueous Ca at these saturation states and are largely consistent with those previously reported in aqueous Ca-free systems by Saldi et al. (2009) and Gautier et al. (2015). Similarly, magnesite growth rates measured by HMFR exhibit no systematic variation on aqueous Ca concentrations. Rates in this study, however, were extended to higher degrees of fluid supersaturation with respect to magnesite than previous studies. All measured HMFR rates can be accurately described taking account the combined effects of both the spiral growth and two dimensional nucleation/growth mechanisms. Despite the lack of a clear effect of aqueous Ca on magnesite growth rates, Raman spectroscopy confirmed the incorporation of up to 8mol percent of Ca2+ into the growing magnesite structure.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2016.01.019</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2016-04, Vol.178, p.195-209
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_1809629578
source Elsevier ScienceDirect Journals
subjects Fluid dynamics
Fluid flow
Fluids
Magnesite
Magnesium carbonate
Nucleation
Saturation
Spirals
title On the effect of aqueous Ca on magnesite growth – Insight into trace element inhibition of carbonate mineral precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20effect%20of%20aqueous%20Ca%20on%20magnesite%20growth%20%E2%80%93%20Insight%20into%20trace%20element%20inhibition%20of%20carbonate%20mineral%20precipitation&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Berninger,%20Ulf-Niklas&rft.date=2016-04-01&rft.volume=178&rft.spage=195&rft.epage=209&rft.pages=195-209&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2016.01.019&rft_dat=%3Cproquest_cross%3E1790930951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790930951&rft_id=info:pmid/&rft_els_id=S0016703716000454&rfr_iscdi=true