Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy

The Al-5.5Zn-2.5Mg (wt pct) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Five samples were directionally solidified upwards at a constant temperature gradient ( G  = 5.5 K/mm) under different growth rates ( V  = 8.3–165 μ m/s) in a Bridgman-type directional solidi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3040-3051
Hauptverfasser: Acer, Emine, Çadırlı, Emin, Erol, Harun, Gündüz, Mehmet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3051
container_issue 6
container_start_page 3040
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 47
creator Acer, Emine
Çadırlı, Emin
Erol, Harun
Gündüz, Mehmet
description The Al-5.5Zn-2.5Mg (wt pct) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Five samples were directionally solidified upwards at a constant temperature gradient ( G  = 5.5 K/mm) under different growth rates ( V  = 8.3–165 μ m/s) in a Bridgman-type directional solidification furnace. The primary dendrite arm spacing, λ 1 , secondary dendrite arm spacing, λ 2 , and microhardness, HV, of the samples were measured. The effects of V on λ 1 , λ 2 and HV properties of the Al-Zn-Mg alloy were studied by microstructure analysis and mechanical characterization. Microstructure characterization of the alloys was carried out using optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, and energy dispersive X-ray spectroscopy. From the experimental results, it is found that the λ 1 , λ 2 values decrease, but HV values increase with the increase in V , and HV values decrease with the increase in λ 1 and λ 2 . Dependencies of dendritic spacing and microhardness on the growth rate were determined using linear regression analysis. The growth rate, microstructure, and Hall–Petch-type relationships obtained in this work have been compared with the results of previous studies.
doi_str_mv 10.1007/s11661-016-3484-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809629502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4039803581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d542500eee4b53b9f6d969d06d8d8f47be53f3571f0bc6e719c43cae745abbc3</originalsourceid><addsrcrecordid>eNp1kMtKxTAQhosoeH0AdwE3bqJJc2mzFO_gQVBXbkKaTDw51EaTFjlvbw51IYKrGYbv_2G-qjqm5IwS0pxnSqWkmFCJGW85VlvVHhWcYao42S47aRgWsma71X7OK0IIVUzuVatr78GOKHp0m-LXuERPZgQUBzQuAS2CTTGPabLjlACZwc2npUlugJxRGJBBVyGVihAH0_dr9Bz74IIP4NBFj18HvHgrSx_Xh9WON32Go595UL3cXL9c3uGHx9v7y4sHbBlXI3aC14IQAOCdYJ3y0impHJGuda3nTQeCeSYa6klnJTRUWc6sgYYL03WWHVSnc-1Hip8T5FG_h2yh780AccqatkTJWglSF_TkD7qKUypvFKppBRdS1LJQdKY2LnICrz9SeDdprSnRG_l6lq-LfL2Rr1XJ1HMmF3Z4g_Sr-d_QN-Ithyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785456526</pqid></control><display><type>article</type><title>Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy</title><source>SpringerNature Complete Journals</source><creator>Acer, Emine ; Çadırlı, Emin ; Erol, Harun ; Gündüz, Mehmet</creator><creatorcontrib>Acer, Emine ; Çadırlı, Emin ; Erol, Harun ; Gündüz, Mehmet</creatorcontrib><description>The Al-5.5Zn-2.5Mg (wt pct) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Five samples were directionally solidified upwards at a constant temperature gradient ( G  = 5.5 K/mm) under different growth rates ( V  = 8.3–165 μ m/s) in a Bridgman-type directional solidification furnace. The primary dendrite arm spacing, λ 1 , secondary dendrite arm spacing, λ 2 , and microhardness, HV, of the samples were measured. The effects of V on λ 1 , λ 2 and HV properties of the Al-Zn-Mg alloy were studied by microstructure analysis and mechanical characterization. Microstructure characterization of the alloys was carried out using optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, and energy dispersive X-ray spectroscopy. From the experimental results, it is found that the λ 1 , λ 2 values decrease, but HV values increase with the increase in V , and HV values decrease with the increase in λ 1 and λ 2 . Dependencies of dendritic spacing and microhardness on the growth rate were determined using linear regression analysis. The growth rate, microstructure, and Hall–Petch-type relationships obtained in this work have been compared with the results of previous studies.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-016-3484-9</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloy solidification ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Constants ; Dendritic structure ; Directional solidification ; Furnaces ; Growth rate ; Materials Science ; Metallic Materials ; Metallurgy ; Microhardness ; Microstructure ; Nanotechnology ; Physical metallurgy ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3040-3051</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d542500eee4b53b9f6d969d06d8d8f47be53f3571f0bc6e719c43cae745abbc3</citedby><cites>FETCH-LOGICAL-c349t-d542500eee4b53b9f6d969d06d8d8f47be53f3571f0bc6e719c43cae745abbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-016-3484-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-016-3484-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Acer, Emine</creatorcontrib><creatorcontrib>Çadırlı, Emin</creatorcontrib><creatorcontrib>Erol, Harun</creatorcontrib><creatorcontrib>Gündüz, Mehmet</creatorcontrib><title>Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The Al-5.5Zn-2.5Mg (wt pct) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Five samples were directionally solidified upwards at a constant temperature gradient ( G  = 5.5 K/mm) under different growth rates ( V  = 8.3–165 μ m/s) in a Bridgman-type directional solidification furnace. The primary dendrite arm spacing, λ 1 , secondary dendrite arm spacing, λ 2 , and microhardness, HV, of the samples were measured. The effects of V on λ 1 , λ 2 and HV properties of the Al-Zn-Mg alloy were studied by microstructure analysis and mechanical characterization. Microstructure characterization of the alloys was carried out using optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, and energy dispersive X-ray spectroscopy. From the experimental results, it is found that the λ 1 , λ 2 values decrease, but HV values increase with the increase in V , and HV values decrease with the increase in λ 1 and λ 2 . Dependencies of dendritic spacing and microhardness on the growth rate were determined using linear regression analysis. The growth rate, microstructure, and Hall–Petch-type relationships obtained in this work have been compared with the results of previous studies.</description><subject>Alloy solidification</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Constants</subject><subject>Dendritic structure</subject><subject>Directional solidification</subject><subject>Furnaces</subject><subject>Growth rate</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Physical metallurgy</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxTAQhosoeH0AdwE3bqJJc2mzFO_gQVBXbkKaTDw51EaTFjlvbw51IYKrGYbv_2G-qjqm5IwS0pxnSqWkmFCJGW85VlvVHhWcYao42S47aRgWsma71X7OK0IIVUzuVatr78GOKHp0m-LXuERPZgQUBzQuAS2CTTGPabLjlACZwc2npUlugJxRGJBBVyGVihAH0_dr9Bz74IIP4NBFj18HvHgrSx_Xh9WON32Go595UL3cXL9c3uGHx9v7y4sHbBlXI3aC14IQAOCdYJ3y0impHJGuda3nTQeCeSYa6klnJTRUWc6sgYYL03WWHVSnc-1Hip8T5FG_h2yh780AccqatkTJWglSF_TkD7qKUypvFKppBRdS1LJQdKY2LnICrz9SeDdprSnRG_l6lq-LfL2Rr1XJ1HMmF3Z4g_Sr-d_QN-Ithyw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Acer, Emine</creator><creator>Çadırlı, Emin</creator><creator>Erol, Harun</creator><creator>Gündüz, Mehmet</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QF</scope></search><sort><creationdate>20160601</creationdate><title>Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy</title><author>Acer, Emine ; Çadırlı, Emin ; Erol, Harun ; Gündüz, Mehmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d542500eee4b53b9f6d969d06d8d8f47be53f3571f0bc6e719c43cae745abbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloy solidification</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Constants</topic><topic>Dendritic structure</topic><topic>Directional solidification</topic><topic>Furnaces</topic><topic>Growth rate</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Physical metallurgy</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Acer, Emine</creatorcontrib><creatorcontrib>Çadırlı, Emin</creatorcontrib><creatorcontrib>Erol, Harun</creatorcontrib><creatorcontrib>Gündüz, Mehmet</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Aluminium Industry Abstracts</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Acer, Emine</au><au>Çadırlı, Emin</au><au>Erol, Harun</au><au>Gündüz, Mehmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>47</volume><issue>6</issue><spage>3040</spage><epage>3051</epage><pages>3040-3051</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The Al-5.5Zn-2.5Mg (wt pct) ternary alloy was prepared using a vacuum melting furnace and a casting furnace. Five samples were directionally solidified upwards at a constant temperature gradient ( G  = 5.5 K/mm) under different growth rates ( V  = 8.3–165 μ m/s) in a Bridgman-type directional solidification furnace. The primary dendrite arm spacing, λ 1 , secondary dendrite arm spacing, λ 2 , and microhardness, HV, of the samples were measured. The effects of V on λ 1 , λ 2 and HV properties of the Al-Zn-Mg alloy were studied by microstructure analysis and mechanical characterization. Microstructure characterization of the alloys was carried out using optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray fluorescence spectrometry, and energy dispersive X-ray spectroscopy. From the experimental results, it is found that the λ 1 , λ 2 values decrease, but HV values increase with the increase in V , and HV values decrease with the increase in λ 1 and λ 2 . Dependencies of dendritic spacing and microhardness on the growth rate were determined using linear regression analysis. The growth rate, microstructure, and Hall–Petch-type relationships obtained in this work have been compared with the results of previous studies.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-016-3484-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2016-06, Vol.47 (6), p.3040-3051
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_miscellaneous_1809629502
source SpringerNature Complete Journals
subjects Alloy solidification
Aluminum base alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Constants
Dendritic structure
Directional solidification
Furnaces
Growth rate
Materials Science
Metallic Materials
Metallurgy
Microhardness
Microstructure
Nanotechnology
Physical metallurgy
Structural Materials
Surfaces and Interfaces
Thin Films
title Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Growth%20Rate%20on%20the%20Microstructure%20and%20Microhardness%20in%20a%20Directionally%20Solidified%20Al-Zn-Mg%20Alloy&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Acer,%20Emine&rft.date=2016-06-01&rft.volume=47&rft.issue=6&rft.spage=3040&rft.epage=3051&rft.pages=3040-3051&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-016-3484-9&rft_dat=%3Cproquest_cross%3E4039803581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785456526&rft_id=info:pmid/&rfr_iscdi=true