The direction-constrained k nearest neighbor query: Dealing with spatio-directional objects

Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GeoInformatica 2016-07, Vol.20 (3), p.471-502
Hauptverfasser: Lee, Min-Joong, Choi, Dong-Wan, Kim, SangYeon, Park, Ha-Myung, Choi, Sunghee, Chung, Chin-Wan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 3
container_start_page 471
container_title GeoInformatica
container_volume 20
creator Lee, Min-Joong
Choi, Dong-Wan
Kim, SangYeon
Park, Ha-Myung
Choi, Sunghee
Chung, Chin-Wan
description Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directional (i.e., spatially and directionally encoded) objects such as photos. Therefore, an efficient and proper utilization of the direction feature is a new challenge. Inspired by this issue and the traditional k nearest neighbor search problem, we devise a new type of query, called the direction-constrained k nearest neighbor (DC k NN) query. The DC k NN query finds k nearest neighbors from the location of the query such that the direction of each neighbor is in a certain range from the direction of the query. We develop a new index structure called MULTI, to efficiently answer the DC k NN query with two novel index access algorithms based on the cost analysis. Furthermore, our problem and solution can be generalized to deal with spatio-circulant dimensional (such as a direction and circulant periods of time such as an hour, a day, and a week) objects. Experimental results show that our proposed index structure and access algorithms outperform two adapted algorithms from existing k NN algorithms.
doi_str_mv 10.1007/s10707-016-0245-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809621949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4039795591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-2ff4672bc517bfff2a5a267231c030bcd9d1e8fa885413bb259b72d5f8a52c723</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmexmkz1K0SoUvNRzSLJJu7XN1mR76L83ZT2I4GmG4XtvHo-QW4QHBBCPCUGAoIA1BVZxys7IBLkoqahZdZ73Ula0RsEvyVVKGwDgWTAhbLl2RdtFZ4euD9T2IQ1Rd8G1xWcRnI4uDXl2q7XpY_F1cPF4TS683iZ38zOn5OPleTl7pYv3-dvsaUFtCThQ5n1VC2YsR2G890xzzfKhRAslGNs2LTrptZS8wtIYxhsjWMu91JzZzE3J_ei7j31-nAa165J1260Orj8khRKammFTNRm9-4Nu-kMMOZ1Ckf05lyAyhSNlY59SdF7tY7fT8agQ1KlFNbaocovq1KI6hWCjJmU2rFz85fyv6Bvl9nM0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1785455807</pqid></control><display><type>article</type><title>The direction-constrained k nearest neighbor query: Dealing with spatio-directional objects</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Min-Joong ; Choi, Dong-Wan ; Kim, SangYeon ; Park, Ha-Myung ; Choi, Sunghee ; Chung, Chin-Wan</creator><creatorcontrib>Lee, Min-Joong ; Choi, Dong-Wan ; Kim, SangYeon ; Park, Ha-Myung ; Choi, Sunghee ; Chung, Chin-Wan</creatorcontrib><description>Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directional (i.e., spatially and directionally encoded) objects such as photos. Therefore, an efficient and proper utilization of the direction feature is a new challenge. Inspired by this issue and the traditional k nearest neighbor search problem, we devise a new type of query, called the direction-constrained k nearest neighbor (DC k NN) query. The DC k NN query finds k nearest neighbors from the location of the query such that the direction of each neighbor is in a certain range from the direction of the query. We develop a new index structure called MULTI, to efficiently answer the DC k NN query with two novel index access algorithms based on the cost analysis. Furthermore, our problem and solution can be generalized to deal with spatio-circulant dimensional (such as a direction and circulant periods of time such as an hour, a day, and a week) objects. Experimental results show that our proposed index structure and access algorithms outperform two adapted algorithms from existing k NN algorithms.</description><identifier>ISSN: 1384-6175</identifier><identifier>EISSN: 1573-7624</identifier><identifier>DOI: 10.1007/s10707-016-0245-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Cost analysis ; Data Structures and Information Theory ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Information Storage and Retrieval ; K nearest neighbour classification tree analysis ; Mobile communication systems ; Multimedia Information Systems ; Query processing ; Searching ; Sensors ; Spatial data ; Utilization</subject><ispartof>GeoInformatica, 2016-07, Vol.20 (3), p.471-502</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-2ff4672bc517bfff2a5a267231c030bcd9d1e8fa885413bb259b72d5f8a52c723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10707-016-0245-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10707-016-0245-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Lee, Min-Joong</creatorcontrib><creatorcontrib>Choi, Dong-Wan</creatorcontrib><creatorcontrib>Kim, SangYeon</creatorcontrib><creatorcontrib>Park, Ha-Myung</creatorcontrib><creatorcontrib>Choi, Sunghee</creatorcontrib><creatorcontrib>Chung, Chin-Wan</creatorcontrib><title>The direction-constrained k nearest neighbor query: Dealing with spatio-directional objects</title><title>GeoInformatica</title><addtitle>Geoinformatica</addtitle><description>Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directional (i.e., spatially and directionally encoded) objects such as photos. Therefore, an efficient and proper utilization of the direction feature is a new challenge. Inspired by this issue and the traditional k nearest neighbor search problem, we devise a new type of query, called the direction-constrained k nearest neighbor (DC k NN) query. The DC k NN query finds k nearest neighbors from the location of the query such that the direction of each neighbor is in a certain range from the direction of the query. We develop a new index structure called MULTI, to efficiently answer the DC k NN query with two novel index access algorithms based on the cost analysis. Furthermore, our problem and solution can be generalized to deal with spatio-circulant dimensional (such as a direction and circulant periods of time such as an hour, a day, and a week) objects. Experimental results show that our proposed index structure and access algorithms outperform two adapted algorithms from existing k NN algorithms.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Cost analysis</subject><subject>Data Structures and Information Theory</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Information Storage and Retrieval</subject><subject>K nearest neighbour classification tree analysis</subject><subject>Mobile communication systems</subject><subject>Multimedia Information Systems</subject><subject>Query processing</subject><subject>Searching</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Utilization</subject><issn>1384-6175</issn><issn>1573-7624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wNuCFy_Rmexmkz1K0SoUvNRzSLJJu7XN1mR76L83ZT2I4GmG4XtvHo-QW4QHBBCPCUGAoIA1BVZxys7IBLkoqahZdZ73Ula0RsEvyVVKGwDgWTAhbLl2RdtFZ4euD9T2IQ1Rd8G1xWcRnI4uDXl2q7XpY_F1cPF4TS683iZ38zOn5OPleTl7pYv3-dvsaUFtCThQ5n1VC2YsR2G890xzzfKhRAslGNs2LTrptZS8wtIYxhsjWMu91JzZzE3J_ei7j31-nAa165J1260Orj8khRKammFTNRm9-4Nu-kMMOZ1Ckf05lyAyhSNlY59SdF7tY7fT8agQ1KlFNbaocovq1KI6hWCjJmU2rFz85fyv6Bvl9nM0</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Lee, Min-Joong</creator><creator>Choi, Dong-Wan</creator><creator>Kim, SangYeon</creator><creator>Park, Ha-Myung</creator><creator>Choi, Sunghee</creator><creator>Chung, Chin-Wan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20160701</creationdate><title>The direction-constrained k nearest neighbor query</title><author>Lee, Min-Joong ; Choi, Dong-Wan ; Kim, SangYeon ; Park, Ha-Myung ; Choi, Sunghee ; Chung, Chin-Wan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-2ff4672bc517bfff2a5a267231c030bcd9d1e8fa885413bb259b72d5f8a52c723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Cost analysis</topic><topic>Data Structures and Information Theory</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Information Storage and Retrieval</topic><topic>K nearest neighbour classification tree analysis</topic><topic>Mobile communication systems</topic><topic>Multimedia Information Systems</topic><topic>Query processing</topic><topic>Searching</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Min-Joong</creatorcontrib><creatorcontrib>Choi, Dong-Wan</creatorcontrib><creatorcontrib>Kim, SangYeon</creatorcontrib><creatorcontrib>Park, Ha-Myung</creatorcontrib><creatorcontrib>Choi, Sunghee</creatorcontrib><creatorcontrib>Chung, Chin-Wan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>GeoInformatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Min-Joong</au><au>Choi, Dong-Wan</au><au>Kim, SangYeon</au><au>Park, Ha-Myung</au><au>Choi, Sunghee</au><au>Chung, Chin-Wan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The direction-constrained k nearest neighbor query: Dealing with spatio-directional objects</atitle><jtitle>GeoInformatica</jtitle><stitle>Geoinformatica</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>20</volume><issue>3</issue><spage>471</spage><epage>502</epage><pages>471-502</pages><issn>1384-6175</issn><eissn>1573-7624</eissn><abstract>Finding k nearest neighbor objects in spatial databases is a fundamental problem in many geospatial systems and the direction is one of the key features of a spatial object. Moreover, the recent tremendous growth of sensor technologies in mobile devices produces an enormous amount of spatio-directional (i.e., spatially and directionally encoded) objects such as photos. Therefore, an efficient and proper utilization of the direction feature is a new challenge. Inspired by this issue and the traditional k nearest neighbor search problem, we devise a new type of query, called the direction-constrained k nearest neighbor (DC k NN) query. The DC k NN query finds k nearest neighbors from the location of the query such that the direction of each neighbor is in a certain range from the direction of the query. We develop a new index structure called MULTI, to efficiently answer the DC k NN query with two novel index access algorithms based on the cost analysis. Furthermore, our problem and solution can be generalized to deal with spatio-circulant dimensional (such as a direction and circulant periods of time such as an hour, a day, and a week) objects. Experimental results show that our proposed index structure and access algorithms outperform two adapted algorithms from existing k NN algorithms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10707-016-0245-2</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1384-6175
ispartof GeoInformatica, 2016-07, Vol.20 (3), p.471-502
issn 1384-6175
1573-7624
language eng
recordid cdi_proquest_miscellaneous_1809621949
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer Science
Cost analysis
Data Structures and Information Theory
Earth and Environmental Science
Geographical Information Systems/Cartography
Geography
Information Storage and Retrieval
K nearest neighbour classification tree analysis
Mobile communication systems
Multimedia Information Systems
Query processing
Searching
Sensors
Spatial data
Utilization
title The direction-constrained k nearest neighbor query: Dealing with spatio-directional objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20direction-constrained%20k%20nearest%20neighbor%20query:%20Dealing%20with%20spatio-directional%20objects&rft.jtitle=GeoInformatica&rft.au=Lee,%20Min-Joong&rft.date=2016-07-01&rft.volume=20&rft.issue=3&rft.spage=471&rft.epage=502&rft.pages=471-502&rft.issn=1384-6175&rft.eissn=1573-7624&rft_id=info:doi/10.1007/s10707-016-0245-2&rft_dat=%3Cproquest_cross%3E4039795591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1785455807&rft_id=info:pmid/&rfr_iscdi=true