Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)
The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydroca...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2016-10, Vol.92 (10), p.1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1 |
container_title | FEMS microbiology ecology |
container_volume | 92 |
creator | Garneau, Marie-Ève Michel, Christine Meisterhans, Guillaume Fortin, Nathalie King, Thomas L. Greer, Charles W. Lee, Kenneth |
description | The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.
Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters. |
doi_str_mv | 10.1093/femsec/fiw130 |
format | Article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809602186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708482225</galeid><oup_id>10.1093/femsec/fiw130</oup_id><sourcerecordid>A708482225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</originalsourceid><addsrcrecordid>eNqFUsFu1DAQtRCIloUjV2SJS5Ga1o6TrHNcrYAiVYUDnK2JPV5cbezFjlv2L_hkvKRQQEjIB8943ryZeR5CnnN2xlkvzi2OCfW5dbdcsAfkmLfLpur6hj_8zT4iT1K6Zoy3omGPyVG9FHLZ8_qYfLvYmxg0xCF4OrhgcBPBwOQO7p6uop6cpgmhchopeENTHn7Yo9MxDA62VIdxzN5NDhM1OTq_mYM6pJHi1x1GN6Kf0im9CnH6fItpoh8gJdggPbnKHm7ydErX4EvhV0_JIwvbhM_u7gX59Ob1x_VFdfn-7bv16rLSTcemSjRcD4PVPbPG9h1wbVvBdI3AjRmgxERbQj3IrgWhJQojh74-zN9IwVAsyMnMu4vhSy4tqdEljdsteAw5KS5Z37Gay65AX_4FvQ45-tKdqhkTrJUt5_eoDWxROW_DFEEfSNVqyWQj67qUX5Czf6DKMVg0Cx6tK-9_JFRzQhE0pYhW7YqcEPeKM3XYADVvgJo3oOBf3DWbhxHNL_TPL78fPOTdf7i-A9aAvQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003058511</pqid></control><display><type>article</type><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth</creator><contributor>Häggblom, Max</contributor><creatorcontrib>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth ; Häggblom, Max</creatorcontrib><description>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.
Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiw130</identifier><identifier>PMID: 27387912</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alphaproteobacteria - genetics ; Arctic Regions ; Bacteroidetes ; Bacteroidetes - genetics ; Biodegradation ; Biodegradation, Environmental ; Bioremediation ; Canada ; Chemical analysis ; Chemical properties ; Communities ; Dissolved organic matter ; Ecology ; Environmental aspects ; Exopolysaccharides ; Flavobacteriaceae - genetics ; Gene sequencing ; Hydrocarbon-degrading bacteria ; Hydrocarbons ; Hydrocarbons - metabolism ; Ice cover ; Ice Cover - microbiology ; Leucine ; Microbial activity ; Microbial colonies ; Microbiology ; Microcosms ; Microorganisms ; Nunavut ; Offshore drilling rigs ; Offshore oil exploration & development ; Oil and gas exploration ; Oil exploration ; Petroleum - metabolism ; Petroleum Pollution ; Physiological aspects ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sea ice ; Seawater ; Seawater - microbiology ; Spacer ; Water analysis ; Water Pollutants, Chemical - metabolism</subject><ispartof>FEMS microbiology ecology, 2016-10, Vol.92 (10), p.1</ispartof><rights>Fisheries and Oceans Canada [2016]. 2016</rights><rights>Fisheries and Oceans Canada [2016].</rights><rights>COPYRIGHT 2016 Oxford University Press</rights><rights>Copyright Oxford University Press, UK Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</citedby><cites>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsec/fiw130$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27387912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Häggblom, Max</contributor><creatorcontrib>Garneau, Marie-Ève</creatorcontrib><creatorcontrib>Michel, Christine</creatorcontrib><creatorcontrib>Meisterhans, Guillaume</creatorcontrib><creatorcontrib>Fortin, Nathalie</creatorcontrib><creatorcontrib>King, Thomas L.</creatorcontrib><creatorcontrib>Greer, Charles W.</creatorcontrib><creatorcontrib>Lee, Kenneth</creatorcontrib><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.
Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</description><subject>Alphaproteobacteria - genetics</subject><subject>Arctic Regions</subject><subject>Bacteroidetes</subject><subject>Bacteroidetes - genetics</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioremediation</subject><subject>Canada</subject><subject>Chemical analysis</subject><subject>Chemical properties</subject><subject>Communities</subject><subject>Dissolved organic matter</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Exopolysaccharides</subject><subject>Flavobacteriaceae - genetics</subject><subject>Gene sequencing</subject><subject>Hydrocarbon-degrading bacteria</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - metabolism</subject><subject>Ice cover</subject><subject>Ice Cover - microbiology</subject><subject>Leucine</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiology</subject><subject>Microcosms</subject><subject>Microorganisms</subject><subject>Nunavut</subject><subject>Offshore drilling rigs</subject><subject>Offshore oil exploration & development</subject><subject>Oil and gas exploration</subject><subject>Oil exploration</subject><subject>Petroleum - metabolism</subject><subject>Petroleum Pollution</subject><subject>Physiological aspects</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sea ice</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Spacer</subject><subject>Water analysis</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUsFu1DAQtRCIloUjV2SJS5Ga1o6TrHNcrYAiVYUDnK2JPV5cbezFjlv2L_hkvKRQQEjIB8943ryZeR5CnnN2xlkvzi2OCfW5dbdcsAfkmLfLpur6hj_8zT4iT1K6Zoy3omGPyVG9FHLZ8_qYfLvYmxg0xCF4OrhgcBPBwOQO7p6uop6cpgmhchopeENTHn7Yo9MxDA62VIdxzN5NDhM1OTq_mYM6pJHi1x1GN6Kf0im9CnH6fItpoh8gJdggPbnKHm7ydErX4EvhV0_JIwvbhM_u7gX59Ob1x_VFdfn-7bv16rLSTcemSjRcD4PVPbPG9h1wbVvBdI3AjRmgxERbQj3IrgWhJQojh74-zN9IwVAsyMnMu4vhSy4tqdEljdsteAw5KS5Z37Gay65AX_4FvQ45-tKdqhkTrJUt5_eoDWxROW_DFEEfSNVqyWQj67qUX5Czf6DKMVg0Cx6tK-9_JFRzQhE0pYhW7YqcEPeKM3XYADVvgJo3oOBf3DWbhxHNL_TPL78fPOTdf7i-A9aAvQA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Garneau, Marie-Ève</creator><creator>Michel, Christine</creator><creator>Meisterhans, Guillaume</creator><creator>Fortin, Nathalie</creator><creator>King, Thomas L.</creator><creator>Greer, Charles W.</creator><creator>Lee, Kenneth</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><author>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alphaproteobacteria - genetics</topic><topic>Arctic Regions</topic><topic>Bacteroidetes</topic><topic>Bacteroidetes - genetics</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioremediation</topic><topic>Canada</topic><topic>Chemical analysis</topic><topic>Chemical properties</topic><topic>Communities</topic><topic>Dissolved organic matter</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Exopolysaccharides</topic><topic>Flavobacteriaceae - genetics</topic><topic>Gene sequencing</topic><topic>Hydrocarbon-degrading bacteria</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - metabolism</topic><topic>Ice cover</topic><topic>Ice Cover - microbiology</topic><topic>Leucine</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiology</topic><topic>Microcosms</topic><topic>Microorganisms</topic><topic>Nunavut</topic><topic>Offshore drilling rigs</topic><topic>Offshore oil exploration & development</topic><topic>Oil and gas exploration</topic><topic>Oil exploration</topic><topic>Petroleum - metabolism</topic><topic>Petroleum Pollution</topic><topic>Physiological aspects</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sea ice</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Spacer</topic><topic>Water analysis</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garneau, Marie-Ève</creatorcontrib><creatorcontrib>Michel, Christine</creatorcontrib><creatorcontrib>Meisterhans, Guillaume</creatorcontrib><creatorcontrib>Fortin, Nathalie</creatorcontrib><creatorcontrib>King, Thomas L.</creatorcontrib><creatorcontrib>Greer, Charles W.</creatorcontrib><creatorcontrib>Lee, Kenneth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garneau, Marie-Ève</au><au>Michel, Christine</au><au>Meisterhans, Guillaume</au><au>Fortin, Nathalie</au><au>King, Thomas L.</au><au>Greer, Charles W.</au><au>Lee, Kenneth</au><au>Häggblom, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>92</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides.
Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27387912</pmid><doi>10.1093/femsec/fiw130</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2016-10, Vol.92 (10), p.1 |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_1809602186 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | Alphaproteobacteria - genetics Arctic Regions Bacteroidetes Bacteroidetes - genetics Biodegradation Biodegradation, Environmental Bioremediation Canada Chemical analysis Chemical properties Communities Dissolved organic matter Ecology Environmental aspects Exopolysaccharides Flavobacteriaceae - genetics Gene sequencing Hydrocarbon-degrading bacteria Hydrocarbons Hydrocarbons - metabolism Ice cover Ice Cover - microbiology Leucine Microbial activity Microbial colonies Microbiology Microcosms Microorganisms Nunavut Offshore drilling rigs Offshore oil exploration & development Oil and gas exploration Oil exploration Petroleum - metabolism Petroleum Pollution Physiological aspects RNA, Ribosomal, 16S - genetics rRNA 16S Sea ice Seawater Seawater - microbiology Spacer Water analysis Water Pollutants, Chemical - metabolism |
title | Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrocarbon%20biodegradation%20by%20Arctic%20sea-ice%20and%20sub-ice%20microbial%20communities%20during%20microcosm%20experiments,%20Northwest%20Passage%20(Nunavut,%20Canada)&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Garneau,%20Marie-%C3%88ve&rft.date=2016-10-01&rft.volume=92&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiw130&rft_dat=%3Cgale_TOX%3EA708482225%3C/gale_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003058511&rft_id=info:pmid/27387912&rft_galeid=A708482225&rft_oup_id=10.1093/femsec/fiw130&rfr_iscdi=true |