Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)

The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydroca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2016-10, Vol.92 (10), p.1
Hauptverfasser: Garneau, Marie-Ève, Michel, Christine, Meisterhans, Guillaume, Fortin, Nathalie, King, Thomas L., Greer, Charles W., Lee, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1
container_title FEMS microbiology ecology
container_volume 92
creator Garneau, Marie-Ève
Michel, Christine
Meisterhans, Guillaume
Fortin, Nathalie
King, Thomas L.
Greer, Charles W.
Lee, Kenneth
description The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.
doi_str_mv 10.1093/femsec/fiw130
format Article
fullrecord <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809602186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A708482225</galeid><oup_id>10.1093/femsec/fiw130</oup_id><sourcerecordid>A708482225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</originalsourceid><addsrcrecordid>eNqFUsFu1DAQtRCIloUjV2SJS5Ga1o6TrHNcrYAiVYUDnK2JPV5cbezFjlv2L_hkvKRQQEjIB8943ryZeR5CnnN2xlkvzi2OCfW5dbdcsAfkmLfLpur6hj_8zT4iT1K6Zoy3omGPyVG9FHLZ8_qYfLvYmxg0xCF4OrhgcBPBwOQO7p6uop6cpgmhchopeENTHn7Yo9MxDA62VIdxzN5NDhM1OTq_mYM6pJHi1x1GN6Kf0im9CnH6fItpoh8gJdggPbnKHm7ydErX4EvhV0_JIwvbhM_u7gX59Ob1x_VFdfn-7bv16rLSTcemSjRcD4PVPbPG9h1wbVvBdI3AjRmgxERbQj3IrgWhJQojh74-zN9IwVAsyMnMu4vhSy4tqdEljdsteAw5KS5Z37Gay65AX_4FvQ45-tKdqhkTrJUt5_eoDWxROW_DFEEfSNVqyWQj67qUX5Czf6DKMVg0Cx6tK-9_JFRzQhE0pYhW7YqcEPeKM3XYADVvgJo3oOBf3DWbhxHNL_TPL78fPOTdf7i-A9aAvQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2003058511</pqid></control><display><type>article</type><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth</creator><contributor>Häggblom, Max</contributor><creatorcontrib>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth ; Häggblom, Max</creatorcontrib><description>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiw130</identifier><identifier>PMID: 27387912</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alphaproteobacteria - genetics ; Arctic Regions ; Bacteroidetes ; Bacteroidetes - genetics ; Biodegradation ; Biodegradation, Environmental ; Bioremediation ; Canada ; Chemical analysis ; Chemical properties ; Communities ; Dissolved organic matter ; Ecology ; Environmental aspects ; Exopolysaccharides ; Flavobacteriaceae - genetics ; Gene sequencing ; Hydrocarbon-degrading bacteria ; Hydrocarbons ; Hydrocarbons - metabolism ; Ice cover ; Ice Cover - microbiology ; Leucine ; Microbial activity ; Microbial colonies ; Microbiology ; Microcosms ; Microorganisms ; Nunavut ; Offshore drilling rigs ; Offshore oil exploration &amp; development ; Oil and gas exploration ; Oil exploration ; Petroleum - metabolism ; Petroleum Pollution ; Physiological aspects ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sea ice ; Seawater ; Seawater - microbiology ; Spacer ; Water analysis ; Water Pollutants, Chemical - metabolism</subject><ispartof>FEMS microbiology ecology, 2016-10, Vol.92 (10), p.1</ispartof><rights>Fisheries and Oceans Canada [2016]. 2016</rights><rights>Fisheries and Oceans Canada [2016].</rights><rights>COPYRIGHT 2016 Oxford University Press</rights><rights>Copyright Oxford University Press, UK Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</citedby><cites>FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsec/fiw130$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27387912$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Häggblom, Max</contributor><creatorcontrib>Garneau, Marie-Ève</creatorcontrib><creatorcontrib>Michel, Christine</creatorcontrib><creatorcontrib>Meisterhans, Guillaume</creatorcontrib><creatorcontrib>Fortin, Nathalie</creatorcontrib><creatorcontrib>King, Thomas L.</creatorcontrib><creatorcontrib>Greer, Charles W.</creatorcontrib><creatorcontrib>Lee, Kenneth</creatorcontrib><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</description><subject>Alphaproteobacteria - genetics</subject><subject>Arctic Regions</subject><subject>Bacteroidetes</subject><subject>Bacteroidetes - genetics</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Bioremediation</subject><subject>Canada</subject><subject>Chemical analysis</subject><subject>Chemical properties</subject><subject>Communities</subject><subject>Dissolved organic matter</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Exopolysaccharides</subject><subject>Flavobacteriaceae - genetics</subject><subject>Gene sequencing</subject><subject>Hydrocarbon-degrading bacteria</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - metabolism</subject><subject>Ice cover</subject><subject>Ice Cover - microbiology</subject><subject>Leucine</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiology</subject><subject>Microcosms</subject><subject>Microorganisms</subject><subject>Nunavut</subject><subject>Offshore drilling rigs</subject><subject>Offshore oil exploration &amp; development</subject><subject>Oil and gas exploration</subject><subject>Oil exploration</subject><subject>Petroleum - metabolism</subject><subject>Petroleum Pollution</subject><subject>Physiological aspects</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sea ice</subject><subject>Seawater</subject><subject>Seawater - microbiology</subject><subject>Spacer</subject><subject>Water analysis</subject><subject>Water Pollutants, Chemical - metabolism</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUsFu1DAQtRCIloUjV2SJS5Ga1o6TrHNcrYAiVYUDnK2JPV5cbezFjlv2L_hkvKRQQEjIB8943ryZeR5CnnN2xlkvzi2OCfW5dbdcsAfkmLfLpur6hj_8zT4iT1K6Zoy3omGPyVG9FHLZ8_qYfLvYmxg0xCF4OrhgcBPBwOQO7p6uop6cpgmhchopeENTHn7Yo9MxDA62VIdxzN5NDhM1OTq_mYM6pJHi1x1GN6Kf0im9CnH6fItpoh8gJdggPbnKHm7ydErX4EvhV0_JIwvbhM_u7gX59Ob1x_VFdfn-7bv16rLSTcemSjRcD4PVPbPG9h1wbVvBdI3AjRmgxERbQj3IrgWhJQojh74-zN9IwVAsyMnMu4vhSy4tqdEljdsteAw5KS5Z37Gay65AX_4FvQ45-tKdqhkTrJUt5_eoDWxROW_DFEEfSNVqyWQj67qUX5Czf6DKMVg0Cx6tK-9_JFRzQhE0pYhW7YqcEPeKM3XYADVvgJo3oOBf3DWbhxHNL_TPL78fPOTdf7i-A9aAvQA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Garneau, Marie-Ève</creator><creator>Michel, Christine</creator><creator>Meisterhans, Guillaume</creator><creator>Fortin, Nathalie</creator><creator>King, Thomas L.</creator><creator>Greer, Charles W.</creator><creator>Lee, Kenneth</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</title><author>Garneau, Marie-Ève ; Michel, Christine ; Meisterhans, Guillaume ; Fortin, Nathalie ; King, Thomas L. ; Greer, Charles W. ; Lee, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-341cbbfc90fdf96a1cf530c2ea1ddbacbb350fd9a865a3c8e3d8b9253404830e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alphaproteobacteria - genetics</topic><topic>Arctic Regions</topic><topic>Bacteroidetes</topic><topic>Bacteroidetes - genetics</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Bioremediation</topic><topic>Canada</topic><topic>Chemical analysis</topic><topic>Chemical properties</topic><topic>Communities</topic><topic>Dissolved organic matter</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Exopolysaccharides</topic><topic>Flavobacteriaceae - genetics</topic><topic>Gene sequencing</topic><topic>Hydrocarbon-degrading bacteria</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - metabolism</topic><topic>Ice cover</topic><topic>Ice Cover - microbiology</topic><topic>Leucine</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiology</topic><topic>Microcosms</topic><topic>Microorganisms</topic><topic>Nunavut</topic><topic>Offshore drilling rigs</topic><topic>Offshore oil exploration &amp; development</topic><topic>Oil and gas exploration</topic><topic>Oil exploration</topic><topic>Petroleum - metabolism</topic><topic>Petroleum Pollution</topic><topic>Physiological aspects</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sea ice</topic><topic>Seawater</topic><topic>Seawater - microbiology</topic><topic>Spacer</topic><topic>Water analysis</topic><topic>Water Pollutants, Chemical - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garneau, Marie-Ève</creatorcontrib><creatorcontrib>Michel, Christine</creatorcontrib><creatorcontrib>Meisterhans, Guillaume</creatorcontrib><creatorcontrib>Fortin, Nathalie</creatorcontrib><creatorcontrib>King, Thomas L.</creatorcontrib><creatorcontrib>Greer, Charles W.</creatorcontrib><creatorcontrib>Lee, Kenneth</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garneau, Marie-Ève</au><au>Michel, Christine</au><au>Meisterhans, Guillaume</au><au>Fortin, Nathalie</au><au>King, Thomas L.</au><au>Greer, Charles W.</au><au>Lee, Kenneth</au><au>Häggblom, Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>92</volume><issue>10</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>The increasing accessibility to navigation and offshore oil exploration brings risks of hydrocarbon releases in Arctic waters. Bioremediation of hydrocarbons is a promising mitigation strategy but challenges remain, particularly due to low microbial metabolic rates in cold, ice-covered seas. Hydrocarbon degradation potential of ice-associated microbes collected from the Northwest Passage was investigated. Microcosm incubations were run for 15 days at –1.7°C with and without oil to determine the effects of hydrocarbon exposure on microbial abundance, diversity and activity, and to estimate component-specific hydrocarbon loss. Diversity was assessed with automated ribosomal intergenic spacer analysis and Ion Torrent 16S rRNA gene sequencing. Bacterial activity was measured by 3H-leucine uptake rates. After incubation, sub-ice and sea-ice communities degraded 94% and 48% of the initial hydrocarbons, respectively. Hydrocarbon exposure changed the composition of sea-ice and sub-ice communities; in sea-ice microcosms, Bacteroidetes (mainly Polaribacter) dominated whereas in sub-ice microcosms, the contribution of Epsilonproteobacteria increased, and that of Alphaproteobacteria and Bacteroidetes decreased. Sequencing data revealed a decline in diversity and increases in Colwellia and Moritella in oil-treated microcosms. Low concentration of dissolved organic matter (DOM) in sub-ice seawater may explain higher hydrocarbon degradation when compared to sea ice, where DOM was abundant and composed of labile exopolysaccharides. Ice-associated microorganisms of the Arctic Ocean can degrade petroleum at −1.7°C within 15 days, and their response to oil varied whether they lived in ice or in underlying waters.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>27387912</pmid><doi>10.1093/femsec/fiw130</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1574-6941
ispartof FEMS microbiology ecology, 2016-10, Vol.92 (10), p.1
issn 1574-6941
0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_1809602186
source Access via Oxford University Press (Open Access Collection)
subjects Alphaproteobacteria - genetics
Arctic Regions
Bacteroidetes
Bacteroidetes - genetics
Biodegradation
Biodegradation, Environmental
Bioremediation
Canada
Chemical analysis
Chemical properties
Communities
Dissolved organic matter
Ecology
Environmental aspects
Exopolysaccharides
Flavobacteriaceae - genetics
Gene sequencing
Hydrocarbon-degrading bacteria
Hydrocarbons
Hydrocarbons - metabolism
Ice cover
Ice Cover - microbiology
Leucine
Microbial activity
Microbial colonies
Microbiology
Microcosms
Microorganisms
Nunavut
Offshore drilling rigs
Offshore oil exploration & development
Oil and gas exploration
Oil exploration
Petroleum - metabolism
Petroleum Pollution
Physiological aspects
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sea ice
Seawater
Seawater - microbiology
Spacer
Water analysis
Water Pollutants, Chemical - metabolism
title Hydrocarbon biodegradation by Arctic sea-ice and sub-ice microbial communities during microcosm experiments, Northwest Passage (Nunavut, Canada)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrocarbon%20biodegradation%20by%20Arctic%20sea-ice%20and%20sub-ice%20microbial%20communities%20during%20microcosm%20experiments,%20Northwest%20Passage%20(Nunavut,%20Canada)&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Garneau,%20Marie-%C3%88ve&rft.date=2016-10-01&rft.volume=92&rft.issue=10&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiw130&rft_dat=%3Cgale_TOX%3EA708482225%3C/gale_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2003058511&rft_id=info:pmid/27387912&rft_galeid=A708482225&rft_oup_id=10.1093/femsec/fiw130&rfr_iscdi=true