A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction

Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inosito...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2001-04, Vol.21 (8), p.2622-2629
Hauptverfasser: Chorna-Ornan, Irit, Joel-Almagor, Tamar, Ben-Ami, Hagit Cohen, Frechter, Shahar, Gillo, Boaz, Selinger, Zvi, Gill, Donald L, Minke, Baruch
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2629
container_issue 8
container_start_page 2622
container_title The Journal of neuroscience
container_volume 21
creator Chorna-Ornan, Irit
Joel-Almagor, Tamar
Ben-Ami, Hagit Cohen
Frechter, Shahar
Gillo, Boaz
Selinger, Zvi
Gill, Donald L
Minke, Baruch
description Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.
doi_str_mv 10.1523/jneurosci.21-08-02622.2001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18094732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18094732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</originalsourceid><addsrcrecordid>eNpFkMFu1DAURS0EokPhF5DFgl2mz3biJOyqtNCiQhFtWbCxPPbLxJVjD3aiEX9Pho7U1duce9_VIeQDgzWruDh7DDinmI1bc1ZAUwCXnK85AHtBVgvRFrwE9pKsgNdQyLIuT8ibnB8BoAZWvyYnjAmQklUr8vucdnEcY6Df0Aw6uDzSh2AxeYeZ_sI04SbpCWmnvXHzSO_cNmjvwpbqYOnFsiPuBuc1_THEKU5Jh2xnM7kY3pJXvfYZ3x3vKbn_fHnfXRU3t1-uu_Obwoi6nopeMiGERI6y0mXVN1a0smF1g20vtTEWdG9BNrK0QlebCoTp-xYNq2zLWi5Oycen2l2Kf2bMkxpdNui9DhjnrFgDbVmLA_jpCTTL6JywV7vkRp3-KgbqIFZ9_X758PP2rrtWnClo1H-x6iB2Cb8_fpk3I9rn6NHk84zBbYe9S6jyqL1fcKb2-_1S2KhDnfgHELqEzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18094732</pqid></control><display><type>article</type><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</creator><creatorcontrib>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</creatorcontrib><description>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.21-08-02622.2001</identifier><identifier>PMID: 11306615</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Boron Compounds - pharmacology ; calcium ; Calcium - metabolism ; Calcium Channels - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Calmodulin-Binding Proteins - metabolism ; Cells, Cultured ; Chloride Channels - immunology ; Chloride Channels - metabolism ; Dose-Response Relationship, Drug ; Dose-Response Relationship, Radiation ; Drosophila ; Drosophila Proteins ; Electroretinography - drug effects ; In Vitro Techniques ; Inositol 1,4,5-Trisphosphate - metabolism ; Inositol 1,4,5-Trisphosphate - pharmacology ; Inositol 1,4,5-Trisphosphate Receptors ; Insect Proteins - metabolism ; Light ; Membrane Proteins - metabolism ; Oocytes - cytology ; Oocytes - drug effects ; Oocytes - metabolism ; Patch-Clamp Techniques ; phospholipase ; Photoreceptor Cells, Invertebrate - drug effects ; Photoreceptor Cells, Invertebrate - metabolism ; Photoreceptor Cells, Invertebrate - radiation effects ; Receptors, Cytoplasmic and Nuclear - antagonists &amp; inhibitors ; Transient Receptor Potential Channels ; Trp protein ; Vision, Ocular - drug effects ; Vision, Ocular - physiology ; Vision, Ocular - radiation effects ; Xenopus</subject><ispartof>The Journal of neuroscience, 2001-04, Vol.21 (8), p.2622-2629</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</citedby><cites>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11306615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chorna-Ornan, Irit</creatorcontrib><creatorcontrib>Joel-Almagor, Tamar</creatorcontrib><creatorcontrib>Ben-Ami, Hagit Cohen</creatorcontrib><creatorcontrib>Frechter, Shahar</creatorcontrib><creatorcontrib>Gillo, Boaz</creatorcontrib><creatorcontrib>Selinger, Zvi</creatorcontrib><creatorcontrib>Gill, Donald L</creatorcontrib><creatorcontrib>Minke, Baruch</creatorcontrib><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</description><subject>Animals</subject><subject>Boron Compounds - pharmacology</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Calmodulin-Binding Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Chloride Channels - immunology</subject><subject>Chloride Channels - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Drosophila</subject><subject>Drosophila Proteins</subject><subject>Electroretinography - drug effects</subject><subject>In Vitro Techniques</subject><subject>Inositol 1,4,5-Trisphosphate - metabolism</subject><subject>Inositol 1,4,5-Trisphosphate - pharmacology</subject><subject>Inositol 1,4,5-Trisphosphate Receptors</subject><subject>Insect Proteins - metabolism</subject><subject>Light</subject><subject>Membrane Proteins - metabolism</subject><subject>Oocytes - cytology</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>phospholipase</subject><subject>Photoreceptor Cells, Invertebrate - drug effects</subject><subject>Photoreceptor Cells, Invertebrate - metabolism</subject><subject>Photoreceptor Cells, Invertebrate - radiation effects</subject><subject>Receptors, Cytoplasmic and Nuclear - antagonists &amp; inhibitors</subject><subject>Transient Receptor Potential Channels</subject><subject>Trp protein</subject><subject>Vision, Ocular - drug effects</subject><subject>Vision, Ocular - physiology</subject><subject>Vision, Ocular - radiation effects</subject><subject>Xenopus</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMFu1DAURS0EokPhF5DFgl2mz3biJOyqtNCiQhFtWbCxPPbLxJVjD3aiEX9Pho7U1duce9_VIeQDgzWruDh7DDinmI1bc1ZAUwCXnK85AHtBVgvRFrwE9pKsgNdQyLIuT8ibnB8BoAZWvyYnjAmQklUr8vucdnEcY6Df0Aw6uDzSh2AxeYeZ_sI04SbpCWmnvXHzSO_cNmjvwpbqYOnFsiPuBuc1_THEKU5Jh2xnM7kY3pJXvfYZ3x3vKbn_fHnfXRU3t1-uu_Obwoi6nopeMiGERI6y0mXVN1a0smF1g20vtTEWdG9BNrK0QlebCoTp-xYNq2zLWi5Oycen2l2Kf2bMkxpdNui9DhjnrFgDbVmLA_jpCTTL6JywV7vkRp3-KgbqIFZ9_X758PP2rrtWnClo1H-x6iB2Cb8_fpk3I9rn6NHk84zBbYe9S6jyqL1fcKb2-_1S2KhDnfgHELqEzg</recordid><startdate>20010415</startdate><enddate>20010415</enddate><creator>Chorna-Ornan, Irit</creator><creator>Joel-Almagor, Tamar</creator><creator>Ben-Ami, Hagit Cohen</creator><creator>Frechter, Shahar</creator><creator>Gillo, Boaz</creator><creator>Selinger, Zvi</creator><creator>Gill, Donald L</creator><creator>Minke, Baruch</creator><general>Soc Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope></search><sort><creationdate>20010415</creationdate><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><author>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Boron Compounds - pharmacology</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Calmodulin-Binding Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Chloride Channels - immunology</topic><topic>Chloride Channels - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Drosophila</topic><topic>Drosophila Proteins</topic><topic>Electroretinography - drug effects</topic><topic>In Vitro Techniques</topic><topic>Inositol 1,4,5-Trisphosphate - metabolism</topic><topic>Inositol 1,4,5-Trisphosphate - pharmacology</topic><topic>Inositol 1,4,5-Trisphosphate Receptors</topic><topic>Insect Proteins - metabolism</topic><topic>Light</topic><topic>Membrane Proteins - metabolism</topic><topic>Oocytes - cytology</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>phospholipase</topic><topic>Photoreceptor Cells, Invertebrate - drug effects</topic><topic>Photoreceptor Cells, Invertebrate - metabolism</topic><topic>Photoreceptor Cells, Invertebrate - radiation effects</topic><topic>Receptors, Cytoplasmic and Nuclear - antagonists &amp; inhibitors</topic><topic>Transient Receptor Potential Channels</topic><topic>Trp protein</topic><topic>Vision, Ocular - drug effects</topic><topic>Vision, Ocular - physiology</topic><topic>Vision, Ocular - radiation effects</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chorna-Ornan, Irit</creatorcontrib><creatorcontrib>Joel-Almagor, Tamar</creatorcontrib><creatorcontrib>Ben-Ami, Hagit Cohen</creatorcontrib><creatorcontrib>Frechter, Shahar</creatorcontrib><creatorcontrib>Gillo, Boaz</creatorcontrib><creatorcontrib>Selinger, Zvi</creatorcontrib><creatorcontrib>Gill, Donald L</creatorcontrib><creatorcontrib>Minke, Baruch</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chorna-Ornan, Irit</au><au>Joel-Almagor, Tamar</au><au>Ben-Ami, Hagit Cohen</au><au>Frechter, Shahar</au><au>Gillo, Boaz</au><au>Selinger, Zvi</au><au>Gill, Donald L</au><au>Minke, Baruch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2001-04-15</date><risdate>2001</risdate><volume>21</volume><issue>8</issue><spage>2622</spage><epage>2629</epage><pages>2622-2629</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>11306615</pmid><doi>10.1523/jneurosci.21-08-02622.2001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2001-04, Vol.21 (8), p.2622-2629
issn 0270-6474
1529-2401
language eng
recordid cdi_proquest_miscellaneous_18094732
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Boron Compounds - pharmacology
calcium
Calcium - metabolism
Calcium Channels - metabolism
Calcium Signaling - drug effects
Calcium Signaling - physiology
Calmodulin-Binding Proteins - metabolism
Cells, Cultured
Chloride Channels - immunology
Chloride Channels - metabolism
Dose-Response Relationship, Drug
Dose-Response Relationship, Radiation
Drosophila
Drosophila Proteins
Electroretinography - drug effects
In Vitro Techniques
Inositol 1,4,5-Trisphosphate - metabolism
Inositol 1,4,5-Trisphosphate - pharmacology
Inositol 1,4,5-Trisphosphate Receptors
Insect Proteins - metabolism
Light
Membrane Proteins - metabolism
Oocytes - cytology
Oocytes - drug effects
Oocytes - metabolism
Patch-Clamp Techniques
phospholipase
Photoreceptor Cells, Invertebrate - drug effects
Photoreceptor Cells, Invertebrate - metabolism
Photoreceptor Cells, Invertebrate - radiation effects
Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors
Transient Receptor Potential Channels
Trp protein
Vision, Ocular - drug effects
Vision, Ocular - physiology
Vision, Ocular - radiation effects
Xenopus
title A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Common%20Mechanism%20Underlies%20Vertebrate%20Calcium%20Signaling%20and%20Drosophila%20Phototransduction&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chorna-Ornan,%20Irit&rft.date=2001-04-15&rft.volume=21&rft.issue=8&rft.spage=2622&rft.epage=2629&rft.pages=2622-2629&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.21-08-02622.2001&rft_dat=%3Cproquest_cross%3E18094732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18094732&rft_id=info:pmid/11306615&rfr_iscdi=true