A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction
Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inosito...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2001-04, Vol.21 (8), p.2622-2629 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2629 |
---|---|
container_issue | 8 |
container_start_page | 2622 |
container_title | The Journal of neuroscience |
container_volume | 21 |
creator | Chorna-Ornan, Irit Joel-Almagor, Tamar Ben-Ami, Hagit Cohen Frechter, Shahar Gillo, Boaz Selinger, Zvi Gill, Donald L Minke, Baruch |
description | Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway. |
doi_str_mv | 10.1523/jneurosci.21-08-02622.2001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18094732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18094732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</originalsourceid><addsrcrecordid>eNpFkMFu1DAURS0EokPhF5DFgl2mz3biJOyqtNCiQhFtWbCxPPbLxJVjD3aiEX9Pho7U1duce9_VIeQDgzWruDh7DDinmI1bc1ZAUwCXnK85AHtBVgvRFrwE9pKsgNdQyLIuT8ibnB8BoAZWvyYnjAmQklUr8vucdnEcY6Df0Aw6uDzSh2AxeYeZ_sI04SbpCWmnvXHzSO_cNmjvwpbqYOnFsiPuBuc1_THEKU5Jh2xnM7kY3pJXvfYZ3x3vKbn_fHnfXRU3t1-uu_Obwoi6nopeMiGERI6y0mXVN1a0smF1g20vtTEWdG9BNrK0QlebCoTp-xYNq2zLWi5Oycen2l2Kf2bMkxpdNui9DhjnrFgDbVmLA_jpCTTL6JywV7vkRp3-KgbqIFZ9_X758PP2rrtWnClo1H-x6iB2Cb8_fpk3I9rn6NHk84zBbYe9S6jyqL1fcKb2-_1S2KhDnfgHELqEzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18094732</pqid></control><display><type>article</type><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</creator><creatorcontrib>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</creatorcontrib><description>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/jneurosci.21-08-02622.2001</identifier><identifier>PMID: 11306615</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Animals ; Boron Compounds - pharmacology ; calcium ; Calcium - metabolism ; Calcium Channels - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Calmodulin-Binding Proteins - metabolism ; Cells, Cultured ; Chloride Channels - immunology ; Chloride Channels - metabolism ; Dose-Response Relationship, Drug ; Dose-Response Relationship, Radiation ; Drosophila ; Drosophila Proteins ; Electroretinography - drug effects ; In Vitro Techniques ; Inositol 1,4,5-Trisphosphate - metabolism ; Inositol 1,4,5-Trisphosphate - pharmacology ; Inositol 1,4,5-Trisphosphate Receptors ; Insect Proteins - metabolism ; Light ; Membrane Proteins - metabolism ; Oocytes - cytology ; Oocytes - drug effects ; Oocytes - metabolism ; Patch-Clamp Techniques ; phospholipase ; Photoreceptor Cells, Invertebrate - drug effects ; Photoreceptor Cells, Invertebrate - metabolism ; Photoreceptor Cells, Invertebrate - radiation effects ; Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors ; Transient Receptor Potential Channels ; Trp protein ; Vision, Ocular - drug effects ; Vision, Ocular - physiology ; Vision, Ocular - radiation effects ; Xenopus</subject><ispartof>The Journal of neuroscience, 2001-04, Vol.21 (8), p.2622-2629</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</citedby><cites>FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11306615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chorna-Ornan, Irit</creatorcontrib><creatorcontrib>Joel-Almagor, Tamar</creatorcontrib><creatorcontrib>Ben-Ami, Hagit Cohen</creatorcontrib><creatorcontrib>Frechter, Shahar</creatorcontrib><creatorcontrib>Gillo, Boaz</creatorcontrib><creatorcontrib>Selinger, Zvi</creatorcontrib><creatorcontrib>Gill, Donald L</creatorcontrib><creatorcontrib>Minke, Baruch</creatorcontrib><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</description><subject>Animals</subject><subject>Boron Compounds - pharmacology</subject><subject>calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Calmodulin-Binding Proteins - metabolism</subject><subject>Cells, Cultured</subject><subject>Chloride Channels - immunology</subject><subject>Chloride Channels - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Drosophila</subject><subject>Drosophila Proteins</subject><subject>Electroretinography - drug effects</subject><subject>In Vitro Techniques</subject><subject>Inositol 1,4,5-Trisphosphate - metabolism</subject><subject>Inositol 1,4,5-Trisphosphate - pharmacology</subject><subject>Inositol 1,4,5-Trisphosphate Receptors</subject><subject>Insect Proteins - metabolism</subject><subject>Light</subject><subject>Membrane Proteins - metabolism</subject><subject>Oocytes - cytology</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>phospholipase</subject><subject>Photoreceptor Cells, Invertebrate - drug effects</subject><subject>Photoreceptor Cells, Invertebrate - metabolism</subject><subject>Photoreceptor Cells, Invertebrate - radiation effects</subject><subject>Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors</subject><subject>Transient Receptor Potential Channels</subject><subject>Trp protein</subject><subject>Vision, Ocular - drug effects</subject><subject>Vision, Ocular - physiology</subject><subject>Vision, Ocular - radiation effects</subject><subject>Xenopus</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkMFu1DAURS0EokPhF5DFgl2mz3biJOyqtNCiQhFtWbCxPPbLxJVjD3aiEX9Pho7U1duce9_VIeQDgzWruDh7DDinmI1bc1ZAUwCXnK85AHtBVgvRFrwE9pKsgNdQyLIuT8ibnB8BoAZWvyYnjAmQklUr8vucdnEcY6Df0Aw6uDzSh2AxeYeZ_sI04SbpCWmnvXHzSO_cNmjvwpbqYOnFsiPuBuc1_THEKU5Jh2xnM7kY3pJXvfYZ3x3vKbn_fHnfXRU3t1-uu_Obwoi6nopeMiGERI6y0mXVN1a0smF1g20vtTEWdG9BNrK0QlebCoTp-xYNq2zLWi5Oycen2l2Kf2bMkxpdNui9DhjnrFgDbVmLA_jpCTTL6JywV7vkRp3-KgbqIFZ9_X758PP2rrtWnClo1H-x6iB2Cb8_fpk3I9rn6NHk84zBbYe9S6jyqL1fcKb2-_1S2KhDnfgHELqEzg</recordid><startdate>20010415</startdate><enddate>20010415</enddate><creator>Chorna-Ornan, Irit</creator><creator>Joel-Almagor, Tamar</creator><creator>Ben-Ami, Hagit Cohen</creator><creator>Frechter, Shahar</creator><creator>Gillo, Boaz</creator><creator>Selinger, Zvi</creator><creator>Gill, Donald L</creator><creator>Minke, Baruch</creator><general>Soc Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope></search><sort><creationdate>20010415</creationdate><title>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</title><author>Chorna-Ornan, Irit ; Joel-Almagor, Tamar ; Ben-Ami, Hagit Cohen ; Frechter, Shahar ; Gillo, Boaz ; Selinger, Zvi ; Gill, Donald L ; Minke, Baruch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-f613336e2e65a45f8d3968178e9f6accd0afd06864d3a5b503cff9ec15d91923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Boron Compounds - pharmacology</topic><topic>calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Calmodulin-Binding Proteins - metabolism</topic><topic>Cells, Cultured</topic><topic>Chloride Channels - immunology</topic><topic>Chloride Channels - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Drosophila</topic><topic>Drosophila Proteins</topic><topic>Electroretinography - drug effects</topic><topic>In Vitro Techniques</topic><topic>Inositol 1,4,5-Trisphosphate - metabolism</topic><topic>Inositol 1,4,5-Trisphosphate - pharmacology</topic><topic>Inositol 1,4,5-Trisphosphate Receptors</topic><topic>Insect Proteins - metabolism</topic><topic>Light</topic><topic>Membrane Proteins - metabolism</topic><topic>Oocytes - cytology</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>phospholipase</topic><topic>Photoreceptor Cells, Invertebrate - drug effects</topic><topic>Photoreceptor Cells, Invertebrate - metabolism</topic><topic>Photoreceptor Cells, Invertebrate - radiation effects</topic><topic>Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors</topic><topic>Transient Receptor Potential Channels</topic><topic>Trp protein</topic><topic>Vision, Ocular - drug effects</topic><topic>Vision, Ocular - physiology</topic><topic>Vision, Ocular - radiation effects</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chorna-Ornan, Irit</creatorcontrib><creatorcontrib>Joel-Almagor, Tamar</creatorcontrib><creatorcontrib>Ben-Ami, Hagit Cohen</creatorcontrib><creatorcontrib>Frechter, Shahar</creatorcontrib><creatorcontrib>Gillo, Boaz</creatorcontrib><creatorcontrib>Selinger, Zvi</creatorcontrib><creatorcontrib>Gill, Donald L</creatorcontrib><creatorcontrib>Minke, Baruch</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chorna-Ornan, Irit</au><au>Joel-Almagor, Tamar</au><au>Ben-Ami, Hagit Cohen</au><au>Frechter, Shahar</au><au>Gillo, Boaz</au><au>Selinger, Zvi</au><au>Gill, Donald L</au><au>Minke, Baruch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2001-04-15</date><risdate>2001</risdate><volume>21</volume><issue>8</issue><spage>2622</spage><epage>2629</epage><pages>2622-2629</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Drosophila phototransduction is an important model system for studies of inositol lipid signaling. Light excitation in Drosophila photoreceptors depends on phospholipase C, because null mutants of this enzyme do not respond to light. Surprisingly, genetic elimination of the apparently single inositol trisphosphate receptor (InsP(3)R) of Drosophila has no effect on phototransduction. This led to the proposal that Drosophila photoreceptors do not use the InsP(3) branch of phospholipase C (PLC)-mediated signaling for phototransduction, unlike most other inositol lipid-signaling systems. To examine this hypothesis we applied the membrane-permeant InsP(3)R antagonist 2-aminoethoxydiphenyl borate (2-APB), which has proved to be an important probe for assessing InsP(3)R involvement in various signaling systems. We first examined the effects of 2-APB on Xenopus oocytes. We found that 2-APB is efficient at reversibly blocking the robust InsP(3)-mediated Ca(2+) release and store-operated Ca(2+) entry in Xenopus oocytes at a stage operating after production of InsP(3) but before the opening of the surface membrane Cl(-) channels by Ca(2+). We next demonstrated that 2-APB is effective at reversibly blocking the response to light of Drosophila photoreceptors in a light-dependent manner at a concentration range similar to that effective in Xenopus oocytes and other cells. We show furthermore that 2-APB does not directly block the light-sensitive channels, indicating that it operates upstream in the activation of these channels. The results indicate an important link in the coupling mechanism of vertebrate store-operated channels and Drosophila TRP channels, which involves the InsP(3) branch of the inositol lipid-signaling pathway.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>11306615</pmid><doi>10.1523/jneurosci.21-08-02622.2001</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2001-04, Vol.21 (8), p.2622-2629 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_proquest_miscellaneous_18094732 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Boron Compounds - pharmacology calcium Calcium - metabolism Calcium Channels - metabolism Calcium Signaling - drug effects Calcium Signaling - physiology Calmodulin-Binding Proteins - metabolism Cells, Cultured Chloride Channels - immunology Chloride Channels - metabolism Dose-Response Relationship, Drug Dose-Response Relationship, Radiation Drosophila Drosophila Proteins Electroretinography - drug effects In Vitro Techniques Inositol 1,4,5-Trisphosphate - metabolism Inositol 1,4,5-Trisphosphate - pharmacology Inositol 1,4,5-Trisphosphate Receptors Insect Proteins - metabolism Light Membrane Proteins - metabolism Oocytes - cytology Oocytes - drug effects Oocytes - metabolism Patch-Clamp Techniques phospholipase Photoreceptor Cells, Invertebrate - drug effects Photoreceptor Cells, Invertebrate - metabolism Photoreceptor Cells, Invertebrate - radiation effects Receptors, Cytoplasmic and Nuclear - antagonists & inhibitors Transient Receptor Potential Channels Trp protein Vision, Ocular - drug effects Vision, Ocular - physiology Vision, Ocular - radiation effects Xenopus |
title | A Common Mechanism Underlies Vertebrate Calcium Signaling and Drosophila Phototransduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A58%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Common%20Mechanism%20Underlies%20Vertebrate%20Calcium%20Signaling%20and%20Drosophila%20Phototransduction&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Chorna-Ornan,%20Irit&rft.date=2001-04-15&rft.volume=21&rft.issue=8&rft.spage=2622&rft.epage=2629&rft.pages=2622-2629&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/jneurosci.21-08-02622.2001&rft_dat=%3Cproquest_cross%3E18094732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18094732&rft_id=info:pmid/11306615&rfr_iscdi=true |