Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance

This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol–gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impeda...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-08, Vol.8 (30), p.19787-19798
Hauptverfasser: Ou, Kai-Lin, Ehamparam, Ramanan, MacDonald, Gordon, Stubhan, Tobias, Wu, Xin, Shallcross, R. Clayton, Richards, Robin, Brabec, Christoph J, Saavedra, S. Scott, Armstrong, Neal R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19798
container_issue 30
container_start_page 19787
container_title ACS applied materials & interfaces
container_volume 8
creator Ou, Kai-Lin
Ehamparam, Ramanan
MacDonald, Gordon
Stubhan, Tobias
Wu, Xin
Shallcross, R. Clayton
Richards, Robin
Brabec, Christoph J
Saavedra, S. Scott
Armstrong, Neal R
description This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol–gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium–tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly­(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current–voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be applicable to a wider array of solution-processed interlayers for “printable” solar cells.
doi_str_mv 10.1021/acsami.6b02792
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1809051341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1809051341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a400t-af54acabc035f76faadead0ab27349fcff429c12d9531076bdecb7f2ab256c743</originalsourceid><addsrcrecordid>eNp1kUFv1DAQhS0EoqVw5Yh8REhZbMdJGm4otLRS0VaiXLhEE2fcuHLsZZwFLX-Ev4vRbvfGySPre2_05jH2WoqVFEq-B5Ngdqt6EKpp1RN2Kluti3NVqafHWesT9iKlByHqUonqOTtRTVkrrdpT9qebgMAsSO43LC4GHi3_Htb8OuQ_DzukxG0kvqZ7CM7wr9ED8Q69Tx94F4nQH3UXHs1C0Uw4OwOe31LcIC0OE__llonfTS4Ul87P_EukzRR9vN9xCCP_hD-dQX6LlFfNEAy-ZM8s-ISvDu8Z-3Z5cdddFTfrz9fdx5sCtBBLAbbSYGAwoqxsU1uAEWEUMOSEurXG2pzSSDW2VSlFUw8jmqGxKgNVbRpdnrG3e98NxR9bTEs_u2RyOggYt6mX56IVlSy1zOhqjxqKKRHafkNuBtr1UvT_yuj3ZfSHMrLgzcF7O8w4HvHH62fg3R7Iwv4hbinkqP9z-wsiRJhv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1809051341</pqid></control><display><type>article</type><title>Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance</title><source>ACS Publications</source><creator>Ou, Kai-Lin ; Ehamparam, Ramanan ; MacDonald, Gordon ; Stubhan, Tobias ; Wu, Xin ; Shallcross, R. Clayton ; Richards, Robin ; Brabec, Christoph J ; Saavedra, S. Scott ; Armstrong, Neal R</creator><creatorcontrib>Ou, Kai-Lin ; Ehamparam, Ramanan ; MacDonald, Gordon ; Stubhan, Tobias ; Wu, Xin ; Shallcross, R. Clayton ; Richards, Robin ; Brabec, Christoph J ; Saavedra, S. Scott ; Armstrong, Neal R</creatorcontrib><description>This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol–gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium–tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly­(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current–voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be applicable to a wider array of solution-processed interlayers for “printable” solar cells.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b02792</identifier><identifier>PMID: 27362429</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-08, Vol.8 (30), p.19787-19798</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a400t-af54acabc035f76faadead0ab27349fcff429c12d9531076bdecb7f2ab256c743</citedby><cites>FETCH-LOGICAL-a400t-af54acabc035f76faadead0ab27349fcff429c12d9531076bdecb7f2ab256c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b02792$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b02792$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27362429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ou, Kai-Lin</creatorcontrib><creatorcontrib>Ehamparam, Ramanan</creatorcontrib><creatorcontrib>MacDonald, Gordon</creatorcontrib><creatorcontrib>Stubhan, Tobias</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Shallcross, R. Clayton</creatorcontrib><creatorcontrib>Richards, Robin</creatorcontrib><creatorcontrib>Brabec, Christoph J</creatorcontrib><creatorcontrib>Saavedra, S. Scott</creatorcontrib><creatorcontrib>Armstrong, Neal R</creatorcontrib><title>Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol–gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium–tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly­(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current–voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be applicable to a wider array of solution-processed interlayers for “printable” solar cells.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUFv1DAQhS0EoqVw5Yh8REhZbMdJGm4otLRS0VaiXLhEE2fcuHLsZZwFLX-Ev4vRbvfGySPre2_05jH2WoqVFEq-B5Ngdqt6EKpp1RN2Kluti3NVqafHWesT9iKlByHqUonqOTtRTVkrrdpT9qebgMAsSO43LC4GHi3_Htb8OuQ_DzukxG0kvqZ7CM7wr9ED8Q69Tx94F4nQH3UXHs1C0Uw4OwOe31LcIC0OE__llonfTS4Ul87P_EukzRR9vN9xCCP_hD-dQX6LlFfNEAy-ZM8s-ISvDu8Z-3Z5cdddFTfrz9fdx5sCtBBLAbbSYGAwoqxsU1uAEWEUMOSEurXG2pzSSDW2VSlFUw8jmqGxKgNVbRpdnrG3e98NxR9bTEs_u2RyOggYt6mX56IVlSy1zOhqjxqKKRHafkNuBtr1UvT_yuj3ZfSHMrLgzcF7O8w4HvHH62fg3R7Iwv4hbinkqP9z-wsiRJhv</recordid><startdate>20160803</startdate><enddate>20160803</enddate><creator>Ou, Kai-Lin</creator><creator>Ehamparam, Ramanan</creator><creator>MacDonald, Gordon</creator><creator>Stubhan, Tobias</creator><creator>Wu, Xin</creator><creator>Shallcross, R. Clayton</creator><creator>Richards, Robin</creator><creator>Brabec, Christoph J</creator><creator>Saavedra, S. Scott</creator><creator>Armstrong, Neal R</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160803</creationdate><title>Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance</title><author>Ou, Kai-Lin ; Ehamparam, Ramanan ; MacDonald, Gordon ; Stubhan, Tobias ; Wu, Xin ; Shallcross, R. Clayton ; Richards, Robin ; Brabec, Christoph J ; Saavedra, S. Scott ; Armstrong, Neal R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a400t-af54acabc035f76faadead0ab27349fcff429c12d9531076bdecb7f2ab256c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Kai-Lin</creatorcontrib><creatorcontrib>Ehamparam, Ramanan</creatorcontrib><creatorcontrib>MacDonald, Gordon</creatorcontrib><creatorcontrib>Stubhan, Tobias</creatorcontrib><creatorcontrib>Wu, Xin</creatorcontrib><creatorcontrib>Shallcross, R. Clayton</creatorcontrib><creatorcontrib>Richards, Robin</creatorcontrib><creatorcontrib>Brabec, Christoph J</creatorcontrib><creatorcontrib>Saavedra, S. Scott</creatorcontrib><creatorcontrib>Armstrong, Neal R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Kai-Lin</au><au>Ehamparam, Ramanan</au><au>MacDonald, Gordon</au><au>Stubhan, Tobias</au><au>Wu, Xin</au><au>Shallcross, R. Clayton</au><au>Richards, Robin</au><au>Brabec, Christoph J</au><au>Saavedra, S. Scott</au><au>Armstrong, Neal R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-08-03</date><risdate>2016</risdate><volume>8</volume><issue>30</issue><spage>19787</spage><epage>19798</epage><pages>19787-19798</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>This report focuses on the evaluation of the electrochemical properties of both solution-deposited sol–gel (sg-ZnO) and sputtered (sp-ZnO) zinc oxide thin films, intended for use as electron-collecting interlayers in organic solar cells (OPVs). In the electrochemical studies (voltammetric and impedance studies), we used indium–tin oxide (ITO) over coated with either sg-ZnO or sp-ZnO interlayers, in contact with either plain electrolyte solutions, or solutions with probe redox couples. The electroactive area of exposed ITO under the ZnO interlayer was estimated by characterizing the electrochemical response of just the oxide interlayer and the charge transfer resistance from solutions with the probe redox couples. Compared to bare ITO, the effective electroactive area of ITO under sg-ZnO films was ca. 70%, 10%, and 0.3% for 40, 80, and 120 nm sg-ZnO films. More compact sp-ZnO films required only 30 nm thicknesses to achieve an effective electroactive ITO area of ca. 0.02%. We also examined the electrochemical responses of these same ITO/ZnO heterojunctions overcoated with device thickness pure poly­(3-hexylthiophehe) (P3HT), and donor/acceptor blended active layers (P3HT:PCBM). Voltammetric oxidation/reduction of pure P3HT thin films on ZnO/ITO contacts showed that pinhole pathways exist in ZnO films that permit dark oxidation (ITO hole injection into P3HT). In P3HT:PCBM active layers, however, the electrochemical activity for P3HT oxidation is greatly attenuated, suggesting PCBM enrichment near the ZnO interface, effectively blocking P3HT interaction with the ITO contact. The shunt resistance, obtained from dark current–voltage behavior in full P3HT/PCBM OPVs, was dependent on both (i) the porosity of the sg-ZnO or sp-ZnO films (as revealed by probe molecule electrochemistry) and (ii) the apparent enrichment of PCBM at ZnO/P3HT:PCBM interfaces, both effects conveniently revealed by electrochemical characterization. We anticipate that these approaches will be applicable to a wider array of solution-processed interlayers for “printable” solar cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27362429</pmid><doi>10.1021/acsami.6b02792</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-08, Vol.8 (30), p.19787-19798
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1809051341
source ACS Publications
title Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A31%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ZnO%20Interlayers%20for%20Organic%20Solar%20Cells:%20Correlation%20of%20Electrochemical%20Properties%20with%20Thin-Film%20Morphology%20and%20Device%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ou,%20Kai-Lin&rft.date=2016-08-03&rft.volume=8&rft.issue=30&rft.spage=19787&rft.epage=19798&rft.pages=19787-19798&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b02792&rft_dat=%3Cproquest_cross%3E1809051341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1809051341&rft_id=info:pmid/27362429&rfr_iscdi=true