Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization
ABSTRACT Matrix molecules such as the enamel‐related calcium‐binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its...
Gespeichert in:
Veröffentlicht in: | Journal of bone and mineral research 2016-06, Vol.31 (6), p.1235-1246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1246 |
---|---|
container_issue | 6 |
container_start_page | 1235 |
container_title | Journal of bone and mineral research |
container_volume | 31 |
creator | Lu, Xuanyu Fukumoto, Satoshi Yamada, Yoshihiko Evans, Carla A Diekwisch, Thomas GH Luan, Xianghong |
description | ABSTRACT
Matrix molecules such as the enamel‐related calcium‐binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN‐deficient mice (AMBNΔ5–6) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis‐related growth factors, such as insulin‐like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN‐deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN‐deficient BMSCs. Confirming the effects of AMBN on long bone growth, back‐crossing of mutant mice with full‐length AMBN overexpressors resulted in a complete rescue of AMBNΔ5–6 bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis‐related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the skeletogenesis of adolescent tooth‐bearing vertebrates. © 2016 American Society for Bone and Mineral Research. |
doi_str_mv | 10.1002/jbmr.2788 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808731803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4074843901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4878-879778b44a28af0dcdbdb9cc89840320ee326fb6f79a9739374c4bcb746e06fc3</originalsourceid><addsrcrecordid>eNqF0UFLwzAUB_AgipvTg19ACl4UrEuaLEmPc8ypbCiiFy8lSVPtaBNNWrb56W236UEQL-9dfu8Pjz8AxwheIgij_lyW7jJinO-ALhpEOCSUo13QhZyTEBKMOuDA-zmEkA4o3QediDJKEUJd8DIsdWFlIXyVm4tAmGC8rJxQuijqQrhgJiqXL4MHZyvdgmGWaVX5YGrNa3BljQ4mzi6qt-YyDWa50U4U-aeocmsOwV4mCq-PtrsHnq_HT6ObcHo_uR0Np6EinPGQs5gxLgkRERcZTFUqUxkrxWNOII6g1jiimaQZi0XMcIwZUUQqyQjVkGYK98DZJvfd2Y9a-yopc98-IIy2tU8Qh5zhZuL_KYtxjCBisKGnv-jc1s40j6wVopxT1KjzjVLOeu90lry7vBRulSCYtN0kbTdJ201jT7aJtSx1-iO_y2hAfwMWeaFXfycld1ezx3XkF7Yxl8c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793168861</pqid></control><display><type>article</type><title>Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lu, Xuanyu ; Fukumoto, Satoshi ; Yamada, Yoshihiko ; Evans, Carla A ; Diekwisch, Thomas GH ; Luan, Xianghong</creator><creatorcontrib>Lu, Xuanyu ; Fukumoto, Satoshi ; Yamada, Yoshihiko ; Evans, Carla A ; Diekwisch, Thomas GH ; Luan, Xianghong</creatorcontrib><description>ABSTRACT
Matrix molecules such as the enamel‐related calcium‐binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN‐deficient mice (AMBNΔ5–6) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis‐related growth factors, such as insulin‐like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN‐deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN‐deficient BMSCs. Confirming the effects of AMBN on long bone growth, back‐crossing of mutant mice with full‐length AMBN overexpressors resulted in a complete rescue of AMBNΔ5–6 bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis‐related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the skeletogenesis of adolescent tooth‐bearing vertebrates. © 2016 American Society for Bone and Mineral Research.</description><identifier>ISSN: 0884-0431</identifier><identifier>EISSN: 1523-4681</identifier><identifier>DOI: 10.1002/jbmr.2788</identifier><identifier>PMID: 26766111</identifier><identifier>CODEN: JBMREJ</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>AMELOBLASTIN ; Animals ; BMP7 ; Bone Density - physiology ; BONE DEVELOPMENT ; Bone Morphogenetic Protein 7 - genetics ; Bone Morphogenetic Protein 7 - metabolism ; Dental Enamel Proteins - genetics ; Dental Enamel Proteins - metabolism ; Extracellular Matrix Proteins - genetics ; Extracellular Matrix Proteins - metabolism ; Femur - growth & development ; IGF1 ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; MESENCHYMAL CELLS ; Mice ; Mice, Knockout ; Osteogenesis - physiology</subject><ispartof>Journal of bone and mineral research, 2016-06, Vol.31 (6), p.1235-1246</ispartof><rights>2016 American Society for Bone and Mineral Research</rights><rights>2016 American Society for Bone and Mineral Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4878-879778b44a28af0dcdbdb9cc89840320ee326fb6f79a9739374c4bcb746e06fc3</citedby><cites>FETCH-LOGICAL-c4878-879778b44a28af0dcdbdb9cc89840320ee326fb6f79a9739374c4bcb746e06fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbmr.2788$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbmr.2788$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26766111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Xuanyu</creatorcontrib><creatorcontrib>Fukumoto, Satoshi</creatorcontrib><creatorcontrib>Yamada, Yoshihiko</creatorcontrib><creatorcontrib>Evans, Carla A</creatorcontrib><creatorcontrib>Diekwisch, Thomas GH</creatorcontrib><creatorcontrib>Luan, Xianghong</creatorcontrib><title>Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization</title><title>Journal of bone and mineral research</title><addtitle>J Bone Miner Res</addtitle><description>ABSTRACT
Matrix molecules such as the enamel‐related calcium‐binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN‐deficient mice (AMBNΔ5–6) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis‐related growth factors, such as insulin‐like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN‐deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN‐deficient BMSCs. Confirming the effects of AMBN on long bone growth, back‐crossing of mutant mice with full‐length AMBN overexpressors resulted in a complete rescue of AMBNΔ5–6 bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis‐related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the skeletogenesis of adolescent tooth‐bearing vertebrates. © 2016 American Society for Bone and Mineral Research.</description><subject>AMELOBLASTIN</subject><subject>Animals</subject><subject>BMP7</subject><subject>Bone Density - physiology</subject><subject>BONE DEVELOPMENT</subject><subject>Bone Morphogenetic Protein 7 - genetics</subject><subject>Bone Morphogenetic Protein 7 - metabolism</subject><subject>Dental Enamel Proteins - genetics</subject><subject>Dental Enamel Proteins - metabolism</subject><subject>Extracellular Matrix Proteins - genetics</subject><subject>Extracellular Matrix Proteins - metabolism</subject><subject>Femur - growth & development</subject><subject>IGF1</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>MESENCHYMAL CELLS</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Osteogenesis - physiology</subject><issn>0884-0431</issn><issn>1523-4681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFLwzAUB_AgipvTg19ACl4UrEuaLEmPc8ypbCiiFy8lSVPtaBNNWrb56W236UEQL-9dfu8Pjz8AxwheIgij_lyW7jJinO-ALhpEOCSUo13QhZyTEBKMOuDA-zmEkA4o3QediDJKEUJd8DIsdWFlIXyVm4tAmGC8rJxQuijqQrhgJiqXL4MHZyvdgmGWaVX5YGrNa3BljQ4mzi6qt-YyDWa50U4U-aeocmsOwV4mCq-PtrsHnq_HT6ObcHo_uR0Np6EinPGQs5gxLgkRERcZTFUqUxkrxWNOII6g1jiimaQZi0XMcIwZUUQqyQjVkGYK98DZJvfd2Y9a-yopc98-IIy2tU8Qh5zhZuL_KYtxjCBisKGnv-jc1s40j6wVopxT1KjzjVLOeu90lry7vBRulSCYtN0kbTdJ201jT7aJtSx1-iO_y2hAfwMWeaFXfycld1ezx3XkF7Yxl8c</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Lu, Xuanyu</creator><creator>Fukumoto, Satoshi</creator><creator>Yamada, Yoshihiko</creator><creator>Evans, Carla A</creator><creator>Diekwisch, Thomas GH</creator><creator>Luan, Xianghong</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization</title><author>Lu, Xuanyu ; Fukumoto, Satoshi ; Yamada, Yoshihiko ; Evans, Carla A ; Diekwisch, Thomas GH ; Luan, Xianghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4878-879778b44a28af0dcdbdb9cc89840320ee326fb6f79a9739374c4bcb746e06fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AMELOBLASTIN</topic><topic>Animals</topic><topic>BMP7</topic><topic>Bone Density - physiology</topic><topic>BONE DEVELOPMENT</topic><topic>Bone Morphogenetic Protein 7 - genetics</topic><topic>Bone Morphogenetic Protein 7 - metabolism</topic><topic>Dental Enamel Proteins - genetics</topic><topic>Dental Enamel Proteins - metabolism</topic><topic>Extracellular Matrix Proteins - genetics</topic><topic>Extracellular Matrix Proteins - metabolism</topic><topic>Femur - growth & development</topic><topic>IGF1</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>MESENCHYMAL CELLS</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Osteogenesis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xuanyu</creatorcontrib><creatorcontrib>Fukumoto, Satoshi</creatorcontrib><creatorcontrib>Yamada, Yoshihiko</creatorcontrib><creatorcontrib>Evans, Carla A</creatorcontrib><creatorcontrib>Diekwisch, Thomas GH</creatorcontrib><creatorcontrib>Luan, Xianghong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bone and mineral research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xuanyu</au><au>Fukumoto, Satoshi</au><au>Yamada, Yoshihiko</au><au>Evans, Carla A</au><au>Diekwisch, Thomas GH</au><au>Luan, Xianghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization</atitle><jtitle>Journal of bone and mineral research</jtitle><addtitle>J Bone Miner Res</addtitle><date>2016-06</date><risdate>2016</risdate><volume>31</volume><issue>6</issue><spage>1235</spage><epage>1246</epage><pages>1235-1246</pages><issn>0884-0431</issn><eissn>1523-4681</eissn><coden>JBMREJ</coden><abstract>ABSTRACT
Matrix molecules such as the enamel‐related calcium‐binding phosphoprotein ameloblastin (AMBN) are expressed in multiple tissues, including teeth, bones, and cartilage. Here we have asked whether AMBN is of functional importance for timely long bone development and, if so, how it exerts its function related to osteogenesis. Adolescent AMBN‐deficient mice (AMBNΔ5–6) suffered from a 33% to 38% reduction in femur length and an 8.4% shorter trunk spinal column when compared with WT controls, whereas there was no difference between adult animals. On a cellular level, AMBN truncation resulted in a shortened growth plate and a 41% to 49% reduction in the number of proliferating tibia chondrocytes and osteoblasts. Bone marrow stromal cells (BMSCs) isolated from AMBN mutant mice displayed defects in proliferation and differentiation potential as well as cytoskeleton organization. Osteogenesis‐related growth factors, such as insulin‐like growth factor 1 (IGF1) and BMP7, were also significantly (46% to 73%) reduced in AMBN‐deficient BMSCs. Addition of exogenous AMBN restored cytoskeleton structures in AMBN mutant BMSCs and resulted in a dramatic 400% to 600% increase in BMP2, BMP7, and Col1A expression. Block of RhoA diminished the effect of AMBN on osteogenic growth factor and matrix protein gene expression. Addition of exogenous BMP7 and IGF1 rescued the proliferation and differentiation potential of AMBN‐deficient BMSCs. Confirming the effects of AMBN on long bone growth, back‐crossing of mutant mice with full‐length AMBN overexpressors resulted in a complete rescue of AMBNΔ5–6 bone defects. Together, these data indicate that AMBN affects extracellular matrix production and cell adhesion properties in the long bone growth plate, resulting in altered cytoskeletal dynamics, increased osteogenesis‐related gene expression, as well as osteoblast and chondrocyte proliferation. We propose that AMBN facilitates rapid long bone growth and an important growth spurt during the skeletogenesis of adolescent tooth‐bearing vertebrates. © 2016 American Society for Bone and Mineral Research.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>26766111</pmid><doi>10.1002/jbmr.2788</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-0431 |
ispartof | Journal of bone and mineral research, 2016-06, Vol.31 (6), p.1235-1246 |
issn | 0884-0431 1523-4681 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808731803 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | AMELOBLASTIN Animals BMP7 Bone Density - physiology BONE DEVELOPMENT Bone Morphogenetic Protein 7 - genetics Bone Morphogenetic Protein 7 - metabolism Dental Enamel Proteins - genetics Dental Enamel Proteins - metabolism Extracellular Matrix Proteins - genetics Extracellular Matrix Proteins - metabolism Femur - growth & development IGF1 Insulin-Like Growth Factor I - genetics Insulin-Like Growth Factor I - metabolism MESENCHYMAL CELLS Mice Mice, Knockout Osteogenesis - physiology |
title | Ameloblastin, an Extracellular Matrix Protein, Affects Long Bone Growth and Mineralization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A34%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ameloblastin,%20an%20Extracellular%20Matrix%20Protein,%20Affects%20Long%20Bone%20Growth%20and%20Mineralization&rft.jtitle=Journal%20of%20bone%20and%20mineral%20research&rft.au=Lu,%20Xuanyu&rft.date=2016-06&rft.volume=31&rft.issue=6&rft.spage=1235&rft.epage=1246&rft.pages=1235-1246&rft.issn=0884-0431&rft.eissn=1523-4681&rft.coden=JBMREJ&rft_id=info:doi/10.1002/jbmr.2788&rft_dat=%3Cproquest_cross%3E4074843901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793168861&rft_id=info:pmid/26766111&rfr_iscdi=true |