In vivo photoacoustic flow cytometry for early malaria diagnosis
In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful techniqu...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2016-06, Vol.89 (6), p.531-542 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 6 |
container_start_page | 531 |
container_title | Cytometry. Part A |
container_volume | 89 |
creator | Cai, Chengzhong Carey, Kai A. Nedosekin, Dmitry A. Menyaev, Yulian A. Sarimollaoglu, Mustafa Galanzha, Ekaterina I. Stumhofer, Jason S. Zharov, Vladimir P. |
description | In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry |
doi_str_mv | 10.1002/cyto.a.22854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808728552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808728552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqWwMSOPDKQ8O3bibKCKj0qVupSByXIcG4ySuthpq_x7Ulo6Mr03HB3dexG6JjAmAPRed60fqzGlgrMTNCSc04QVKZwef0oH6CLGL4CUQ0rP0YDmkAtgbIgepku8cRuPV5--9Ur7dWydxrb2W7wzN6YNHbY-YKNC3eFG1So4hSunPpY-uniJzqyqo7k63BF6e35aTF6T2fxlOnmcJZpBzhJVFSI1lChtWcmAsiwDbgXJc0EpKVVZWJ0JUtm-E-O0YtCHJxkvoaCZqHQ6Qrd77yr477WJrWxc1Kau1dL0oSURIPJ-A0579G6P6uBjDMbKVXCNCp0kIHebyV0zqeTvZj1-czCvy8ZUR_hvpB5ge2DratP9K5OT98X8ce_9Aez1d6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808728552</pqid></control><display><type>article</type><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</creator><creatorcontrib>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</creatorcontrib><description>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.22854</identifier><identifier>PMID: 27078044</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Computers, Handheld ; Ear - blood supply ; Ear - parasitology ; Early Diagnosis ; Erythrocytes - parasitology ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; fluorescence ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hemeproteins - analysis ; Hemeproteins - biosynthesis ; Hemeproteins - chemistry ; hemozoin ; Host-Parasite Interactions ; in vivo flow cytometry ; label‐free detection ; Lasers ; malaria ; Malaria - diagnosis ; Malaria - parasitology ; Mice ; Mice, Inbred C57BL ; nanobubbles ; Parasitemia - diagnosis ; Parasitemia - parasitology ; photoacoustic spectroscopy ; Photoacoustic Techniques - instrumentation ; Photoacoustic Techniques - methods ; Plasmodium yoelii - growth & development ; Plasmodium yoelii - pathogenicity ; Schizonts - chemistry ; Schizonts - physiology</subject><ispartof>Cytometry. Part A, 2016-06, Vol.89 (6), p.531-542</ispartof><rights>2016 International Society for Advancement of Cytometry</rights><rights>2016 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</citedby><cites>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.22854$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.22854$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27078044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Chengzhong</creatorcontrib><creatorcontrib>Carey, Kai A.</creatorcontrib><creatorcontrib>Nedosekin, Dmitry A.</creatorcontrib><creatorcontrib>Menyaev, Yulian A.</creatorcontrib><creatorcontrib>Sarimollaoglu, Mustafa</creatorcontrib><creatorcontrib>Galanzha, Ekaterina I.</creatorcontrib><creatorcontrib>Stumhofer, Jason S.</creatorcontrib><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</description><subject>Animals</subject><subject>Computers, Handheld</subject><subject>Ear - blood supply</subject><subject>Ear - parasitology</subject><subject>Early Diagnosis</subject><subject>Erythrocytes - parasitology</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>fluorescence</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hemeproteins - analysis</subject><subject>Hemeproteins - biosynthesis</subject><subject>Hemeproteins - chemistry</subject><subject>hemozoin</subject><subject>Host-Parasite Interactions</subject><subject>in vivo flow cytometry</subject><subject>label‐free detection</subject><subject>Lasers</subject><subject>malaria</subject><subject>Malaria - diagnosis</subject><subject>Malaria - parasitology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>nanobubbles</subject><subject>Parasitemia - diagnosis</subject><subject>Parasitemia - parasitology</subject><subject>photoacoustic spectroscopy</subject><subject>Photoacoustic Techniques - instrumentation</subject><subject>Photoacoustic Techniques - methods</subject><subject>Plasmodium yoelii - growth & development</subject><subject>Plasmodium yoelii - pathogenicity</subject><subject>Schizonts - chemistry</subject><subject>Schizonts - physiology</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqWwMSOPDKQ8O3bibKCKj0qVupSByXIcG4ySuthpq_x7Ulo6Mr03HB3dexG6JjAmAPRed60fqzGlgrMTNCSc04QVKZwef0oH6CLGL4CUQ0rP0YDmkAtgbIgepku8cRuPV5--9Ur7dWydxrb2W7wzN6YNHbY-YKNC3eFG1So4hSunPpY-uniJzqyqo7k63BF6e35aTF6T2fxlOnmcJZpBzhJVFSI1lChtWcmAsiwDbgXJc0EpKVVZWJ0JUtm-E-O0YtCHJxkvoaCZqHQ6Qrd77yr477WJrWxc1Kau1dL0oSURIPJ-A0579G6P6uBjDMbKVXCNCp0kIHebyV0zqeTvZj1-czCvy8ZUR_hvpB5ge2DratP9K5OT98X8ce_9Aez1d6s</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Cai, Chengzhong</creator><creator>Carey, Kai A.</creator><creator>Nedosekin, Dmitry A.</creator><creator>Menyaev, Yulian A.</creator><creator>Sarimollaoglu, Mustafa</creator><creator>Galanzha, Ekaterina I.</creator><creator>Stumhofer, Jason S.</creator><creator>Zharov, Vladimir P.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201606</creationdate><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><author>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Computers, Handheld</topic><topic>Ear - blood supply</topic><topic>Ear - parasitology</topic><topic>Early Diagnosis</topic><topic>Erythrocytes - parasitology</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>fluorescence</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hemeproteins - analysis</topic><topic>Hemeproteins - biosynthesis</topic><topic>Hemeproteins - chemistry</topic><topic>hemozoin</topic><topic>Host-Parasite Interactions</topic><topic>in vivo flow cytometry</topic><topic>label‐free detection</topic><topic>Lasers</topic><topic>malaria</topic><topic>Malaria - diagnosis</topic><topic>Malaria - parasitology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>nanobubbles</topic><topic>Parasitemia - diagnosis</topic><topic>Parasitemia - parasitology</topic><topic>photoacoustic spectroscopy</topic><topic>Photoacoustic Techniques - instrumentation</topic><topic>Photoacoustic Techniques - methods</topic><topic>Plasmodium yoelii - growth & development</topic><topic>Plasmodium yoelii - pathogenicity</topic><topic>Schizonts - chemistry</topic><topic>Schizonts - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chengzhong</creatorcontrib><creatorcontrib>Carey, Kai A.</creatorcontrib><creatorcontrib>Nedosekin, Dmitry A.</creatorcontrib><creatorcontrib>Menyaev, Yulian A.</creatorcontrib><creatorcontrib>Sarimollaoglu, Mustafa</creatorcontrib><creatorcontrib>Galanzha, Ekaterina I.</creatorcontrib><creatorcontrib>Stumhofer, Jason S.</creatorcontrib><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chengzhong</au><au>Carey, Kai A.</au><au>Nedosekin, Dmitry A.</au><au>Menyaev, Yulian A.</au><au>Sarimollaoglu, Mustafa</au><au>Galanzha, Ekaterina I.</au><au>Stumhofer, Jason S.</au><au>Zharov, Vladimir P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo photoacoustic flow cytometry for early malaria diagnosis</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2016-06</date><risdate>2016</risdate><volume>89</volume><issue>6</issue><spage>531</spage><epage>542</epage><pages>531-542</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</abstract><cop>United States</cop><pmid>27078044</pmid><doi>10.1002/cyto.a.22854</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2016-06, Vol.89 (6), p.531-542 |
issn | 1552-4922 1552-4930 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808728552 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Animals Computers, Handheld Ear - blood supply Ear - parasitology Early Diagnosis Erythrocytes - parasitology Flow Cytometry - instrumentation Flow Cytometry - methods fluorescence Genes, Reporter Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Hemeproteins - analysis Hemeproteins - biosynthesis Hemeproteins - chemistry hemozoin Host-Parasite Interactions in vivo flow cytometry label‐free detection Lasers malaria Malaria - diagnosis Malaria - parasitology Mice Mice, Inbred C57BL nanobubbles Parasitemia - diagnosis Parasitemia - parasitology photoacoustic spectroscopy Photoacoustic Techniques - instrumentation Photoacoustic Techniques - methods Plasmodium yoelii - growth & development Plasmodium yoelii - pathogenicity Schizonts - chemistry Schizonts - physiology |
title | In vivo photoacoustic flow cytometry for early malaria diagnosis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20photoacoustic%20flow%20cytometry%20for%20early%20malaria%20diagnosis&rft.jtitle=Cytometry.%20Part%20A&rft.au=Cai,%20Chengzhong&rft.date=2016-06&rft.volume=89&rft.issue=6&rft.spage=531&rft.epage=542&rft.pages=531-542&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.22854&rft_dat=%3Cproquest_cross%3E1808728552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808728552&rft_id=info:pmid/27078044&rfr_iscdi=true |