In vivo photoacoustic flow cytometry for early malaria diagnosis

In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2016-06, Vol.89 (6), p.531-542
Hauptverfasser: Cai, Chengzhong, Carey, Kai A., Nedosekin, Dmitry A., Menyaev, Yulian A., Sarimollaoglu, Mustafa, Galanzha, Ekaterina I., Stumhofer, Jason S., Zharov, Vladimir P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 6
container_start_page 531
container_title Cytometry. Part A
container_volume 89
creator Cai, Chengzhong
Carey, Kai A.
Nedosekin, Dmitry A.
Menyaev, Yulian A.
Sarimollaoglu, Mustafa
Galanzha, Ekaterina I.
Stumhofer, Jason S.
Zharov, Vladimir P.
description In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry
doi_str_mv 10.1002/cyto.a.22854
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808728552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808728552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EoqWwMSOPDKQ8O3bibKCKj0qVupSByXIcG4ySuthpq_x7Ulo6Mr03HB3dexG6JjAmAPRed60fqzGlgrMTNCSc04QVKZwef0oH6CLGL4CUQ0rP0YDmkAtgbIgepku8cRuPV5--9Ur7dWydxrb2W7wzN6YNHbY-YKNC3eFG1So4hSunPpY-uniJzqyqo7k63BF6e35aTF6T2fxlOnmcJZpBzhJVFSI1lChtWcmAsiwDbgXJc0EpKVVZWJ0JUtm-E-O0YtCHJxkvoaCZqHQ6Qrd77yr477WJrWxc1Kau1dL0oSURIPJ-A0579G6P6uBjDMbKVXCNCp0kIHebyV0zqeTvZj1-czCvy8ZUR_hvpB5ge2DratP9K5OT98X8ce_9Aez1d6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808728552</pqid></control><display><type>article</type><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</creator><creatorcontrib>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</creatorcontrib><description>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.22854</identifier><identifier>PMID: 27078044</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Computers, Handheld ; Ear - blood supply ; Ear - parasitology ; Early Diagnosis ; Erythrocytes - parasitology ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; fluorescence ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hemeproteins - analysis ; Hemeproteins - biosynthesis ; Hemeproteins - chemistry ; hemozoin ; Host-Parasite Interactions ; in vivo flow cytometry ; label‐free detection ; Lasers ; malaria ; Malaria - diagnosis ; Malaria - parasitology ; Mice ; Mice, Inbred C57BL ; nanobubbles ; Parasitemia - diagnosis ; Parasitemia - parasitology ; photoacoustic spectroscopy ; Photoacoustic Techniques - instrumentation ; Photoacoustic Techniques - methods ; Plasmodium yoelii - growth &amp; development ; Plasmodium yoelii - pathogenicity ; Schizonts - chemistry ; Schizonts - physiology</subject><ispartof>Cytometry. Part A, 2016-06, Vol.89 (6), p.531-542</ispartof><rights>2016 International Society for Advancement of Cytometry</rights><rights>2016 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</citedby><cites>FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.22854$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.22854$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,27907,27908,45557,45558,46392,46816</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27078044$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Chengzhong</creatorcontrib><creatorcontrib>Carey, Kai A.</creatorcontrib><creatorcontrib>Nedosekin, Dmitry A.</creatorcontrib><creatorcontrib>Menyaev, Yulian A.</creatorcontrib><creatorcontrib>Sarimollaoglu, Mustafa</creatorcontrib><creatorcontrib>Galanzha, Ekaterina I.</creatorcontrib><creatorcontrib>Stumhofer, Jason S.</creatorcontrib><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</description><subject>Animals</subject><subject>Computers, Handheld</subject><subject>Ear - blood supply</subject><subject>Ear - parasitology</subject><subject>Early Diagnosis</subject><subject>Erythrocytes - parasitology</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>fluorescence</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hemeproteins - analysis</subject><subject>Hemeproteins - biosynthesis</subject><subject>Hemeproteins - chemistry</subject><subject>hemozoin</subject><subject>Host-Parasite Interactions</subject><subject>in vivo flow cytometry</subject><subject>label‐free detection</subject><subject>Lasers</subject><subject>malaria</subject><subject>Malaria - diagnosis</subject><subject>Malaria - parasitology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>nanobubbles</subject><subject>Parasitemia - diagnosis</subject><subject>Parasitemia - parasitology</subject><subject>photoacoustic spectroscopy</subject><subject>Photoacoustic Techniques - instrumentation</subject><subject>Photoacoustic Techniques - methods</subject><subject>Plasmodium yoelii - growth &amp; development</subject><subject>Plasmodium yoelii - pathogenicity</subject><subject>Schizonts - chemistry</subject><subject>Schizonts - physiology</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAURS0EoqWwMSOPDKQ8O3bibKCKj0qVupSByXIcG4ySuthpq_x7Ulo6Mr03HB3dexG6JjAmAPRed60fqzGlgrMTNCSc04QVKZwef0oH6CLGL4CUQ0rP0YDmkAtgbIgepku8cRuPV5--9Ur7dWydxrb2W7wzN6YNHbY-YKNC3eFG1So4hSunPpY-uniJzqyqo7k63BF6e35aTF6T2fxlOnmcJZpBzhJVFSI1lChtWcmAsiwDbgXJc0EpKVVZWJ0JUtm-E-O0YtCHJxkvoaCZqHQ6Qrd77yr477WJrWxc1Kau1dL0oSURIPJ-A0579G6P6uBjDMbKVXCNCp0kIHebyV0zqeTvZj1-czCvy8ZUR_hvpB5ge2DratP9K5OT98X8ce_9Aez1d6s</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Cai, Chengzhong</creator><creator>Carey, Kai A.</creator><creator>Nedosekin, Dmitry A.</creator><creator>Menyaev, Yulian A.</creator><creator>Sarimollaoglu, Mustafa</creator><creator>Galanzha, Ekaterina I.</creator><creator>Stumhofer, Jason S.</creator><creator>Zharov, Vladimir P.</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201606</creationdate><title>In vivo photoacoustic flow cytometry for early malaria diagnosis</title><author>Cai, Chengzhong ; Carey, Kai A. ; Nedosekin, Dmitry A. ; Menyaev, Yulian A. ; Sarimollaoglu, Mustafa ; Galanzha, Ekaterina I. ; Stumhofer, Jason S. ; Zharov, Vladimir P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4074-ad983e21acf4b40246605f81778221bab9fc681df100452d40155165b09268dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Computers, Handheld</topic><topic>Ear - blood supply</topic><topic>Ear - parasitology</topic><topic>Early Diagnosis</topic><topic>Erythrocytes - parasitology</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>fluorescence</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hemeproteins - analysis</topic><topic>Hemeproteins - biosynthesis</topic><topic>Hemeproteins - chemistry</topic><topic>hemozoin</topic><topic>Host-Parasite Interactions</topic><topic>in vivo flow cytometry</topic><topic>label‐free detection</topic><topic>Lasers</topic><topic>malaria</topic><topic>Malaria - diagnosis</topic><topic>Malaria - parasitology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>nanobubbles</topic><topic>Parasitemia - diagnosis</topic><topic>Parasitemia - parasitology</topic><topic>photoacoustic spectroscopy</topic><topic>Photoacoustic Techniques - instrumentation</topic><topic>Photoacoustic Techniques - methods</topic><topic>Plasmodium yoelii - growth &amp; development</topic><topic>Plasmodium yoelii - pathogenicity</topic><topic>Schizonts - chemistry</topic><topic>Schizonts - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chengzhong</creatorcontrib><creatorcontrib>Carey, Kai A.</creatorcontrib><creatorcontrib>Nedosekin, Dmitry A.</creatorcontrib><creatorcontrib>Menyaev, Yulian A.</creatorcontrib><creatorcontrib>Sarimollaoglu, Mustafa</creatorcontrib><creatorcontrib>Galanzha, Ekaterina I.</creatorcontrib><creatorcontrib>Stumhofer, Jason S.</creatorcontrib><creatorcontrib>Zharov, Vladimir P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chengzhong</au><au>Carey, Kai A.</au><au>Nedosekin, Dmitry A.</au><au>Menyaev, Yulian A.</au><au>Sarimollaoglu, Mustafa</au><au>Galanzha, Ekaterina I.</au><au>Stumhofer, Jason S.</au><au>Zharov, Vladimir P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo photoacoustic flow cytometry for early malaria diagnosis</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2016-06</date><risdate>2016</risdate><volume>89</volume><issue>6</issue><spage>531</spage><epage>542</epage><pages>531-542</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>In vivo photoacoustic (PA) flow cytometry (PAFC) has already demonstrated a great potential for the diagnosis of deadly diseases through ultrasensitive detection of rare disease‐associated circulating markers in whole blood volume. Here, we demonstrate the first application of this powerful technique for early diagnosis of malaria through label‐free detection of malaria parasite‐produced hemozoin in infected red blood cells (iRBCs) as high‐contrast PA agent. The existing malaria tests using blood smears can detect the disease at 0.001–0.1% of parasitemia. On the contrary, linear PAFC showed a potential for noninvasive malaria diagnosis at an extremely low level of parasitemia of 0.0000001%, which is ∼103 times better than the existing tests. Multicolor time‐of‐flight PAFC with high‐pulse repetition rate lasers at wavelengths of 532, 671, and 820 nm demonstrated rapid spectral and spatial identification and quantitative enumeration of individual iRBCs. Integration of PAFC with fluorescence flow cytometry (FFC) provided real‐time simultaneous detection of single iRBCs and parasites expressing green fluorescence proteins, respectively. A combination of linear and nonlinear nanobubble‐based multicolor PAFC showed capability to real‐time control therapy efficiency by counting of iRBCs before, during, and after treatment. Our results suggest that high‐sensitivity, high‐resolution ultrafast PAFC–FFC platform represents a powerful research tool to provide the insight on malaria progression through dynamic study of parasite–cell interactions directly in bloodstream, whereas portable hand‐worn PAFC device could be broadly used in humans for early malaria diagnosis. © 2016 International Society for Advancement of Cytometry</abstract><cop>United States</cop><pmid>27078044</pmid><doi>10.1002/cyto.a.22854</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2016-06, Vol.89 (6), p.531-542
issn 1552-4922
1552-4930
language eng
recordid cdi_proquest_miscellaneous_1808728552
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Computers, Handheld
Ear - blood supply
Ear - parasitology
Early Diagnosis
Erythrocytes - parasitology
Flow Cytometry - instrumentation
Flow Cytometry - methods
fluorescence
Genes, Reporter
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Hemeproteins - analysis
Hemeproteins - biosynthesis
Hemeproteins - chemistry
hemozoin
Host-Parasite Interactions
in vivo flow cytometry
label‐free detection
Lasers
malaria
Malaria - diagnosis
Malaria - parasitology
Mice
Mice, Inbred C57BL
nanobubbles
Parasitemia - diagnosis
Parasitemia - parasitology
photoacoustic spectroscopy
Photoacoustic Techniques - instrumentation
Photoacoustic Techniques - methods
Plasmodium yoelii - growth & development
Plasmodium yoelii - pathogenicity
Schizonts - chemistry
Schizonts - physiology
title In vivo photoacoustic flow cytometry for early malaria diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A22%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20photoacoustic%20flow%20cytometry%20for%20early%20malaria%20diagnosis&rft.jtitle=Cytometry.%20Part%20A&rft.au=Cai,%20Chengzhong&rft.date=2016-06&rft.volume=89&rft.issue=6&rft.spage=531&rft.epage=542&rft.pages=531-542&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.22854&rft_dat=%3Cproquest_cross%3E1808728552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808728552&rft_id=info:pmid/27078044&rfr_iscdi=true