Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses
The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S...
Gespeichert in:
Veröffentlicht in: | Plant cell, tissue and organ culture tissue and organ culture, 2016-06, Vol.125 (3), p.537-551 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 537 |
container_title | Plant cell, tissue and organ culture |
container_volume | 125 |
creator | Tu, Mingxing Xianhang Wang Li Huang Rongrong Guo Hongjing Zhang Junshe Cai Xiping Wang |
description | The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape. |
doi_str_mv | 10.1007/s11240-016-0969-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808718406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808718406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMo-Hz6AVwZcOOio8nk_7KUqoWCgtaFm5DJZJ4p85Jpbh7Y7-CHNsMUhC6EQCDnd8695CD0mpL3lBD1ASjtOekIlR0x0nTyCdpRoVgnCOdP0a4JqpNaqOfoBcAtIUQyTnfoz-XvpQSAmBPOE3b4UNwS8PDz6iuuxSXwJS51VSfnay5n-MfdKjJzhmPakENI0ePz4oY45gUi4PrLzdElh31OUyjtIc-hoT6sQ46nucZlDrgZcm1WqOsKAV6iZ5ObIbx6uPfo5uPl94vP3fWXT1cX59edZ4rVjlNvuJA80NENRPaGymEcRqKcC4EHrXpumJ7MJKlqZ2Rcj34USvh-FGZQbI_ebblLyXenANUeI_gwzy6FfAJLNdGKat7-aI_ePkJv86mktp3te2GY0aJnjaIb5UsGKGGyS4lHV-4tJXbtx2792FaDXfuxa3K_eaCx6RDKv-T_md5spsll6w4lgr351jeAEKq15pr9BfvqnSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259398523</pqid></control><display><type>article</type><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><source>Springer Nature - Complete Springer Journals</source><creator>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</creator><creatorcontrib>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</creatorcontrib><description>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</description><identifier>ISSN: 0167-6857</identifier><identifier>EISSN: 1573-5044</identifier><identifier>DOI: 10.1007/s11240-016-0969-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abiotic stress ; Abscisic acid ; Arabidopsis ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Cauliflower mosaic virus ; Drought ; drought tolerance ; Gene expression ; gene expression regulation ; gene overexpression ; genes ; Germination ; Grapes ; Leucine ; leucine zipper ; Leucine zipper proteins ; Life Sciences ; mature plants ; Original Article ; Osmotic stress ; Overexpression ; Oxidative stress ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; promoter regions ; Salinity tolerance ; Seed germination ; Seedlings ; Signal transduction ; stress response ; Transcription factors ; Transgenic plants ; Viruses ; Vitaceae ; Vitis ; Vitis heyneana</subject><ispartof>Plant cell, tissue and organ culture, 2016-06, Vol.125 (3), p.537-551</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Plant Cell, Tissue and Organ Culture (PCTOC) is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</citedby><cites>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11240-016-0969-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11240-016-0969-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Xianhang Wang</creatorcontrib><creatorcontrib>Li Huang</creatorcontrib><creatorcontrib>Rongrong Guo</creatorcontrib><creatorcontrib>Hongjing Zhang</creatorcontrib><creatorcontrib>Junshe Cai</creatorcontrib><creatorcontrib>Xiping Wang</creatorcontrib><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><title>Plant cell, tissue and organ culture</title><addtitle>Plant Cell Tiss Organ Cult</addtitle><description>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Cauliflower mosaic virus</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Germination</subject><subject>Grapes</subject><subject>Leucine</subject><subject>leucine zipper</subject><subject>Leucine zipper proteins</subject><subject>Life Sciences</subject><subject>mature plants</subject><subject>Original Article</subject><subject>Osmotic stress</subject><subject>Overexpression</subject><subject>Oxidative stress</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>promoter regions</subject><subject>Salinity tolerance</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>stress response</subject><subject>Transcription factors</subject><subject>Transgenic plants</subject><subject>Viruses</subject><subject>Vitaceae</subject><subject>Vitis</subject><subject>Vitis heyneana</subject><issn>0167-6857</issn><issn>1573-5044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9rFTEUxYMo-Hz6AVwZcOOio8nk_7KUqoWCgtaFm5DJZJ4p85Jpbh7Y7-CHNsMUhC6EQCDnd8695CD0mpL3lBD1ASjtOekIlR0x0nTyCdpRoVgnCOdP0a4JqpNaqOfoBcAtIUQyTnfoz-XvpQSAmBPOE3b4UNwS8PDz6iuuxSXwJS51VSfnay5n-MfdKjJzhmPakENI0ePz4oY45gUi4PrLzdElh31OUyjtIc-hoT6sQ46nucZlDrgZcm1WqOsKAV6iZ5ObIbx6uPfo5uPl94vP3fWXT1cX59edZ4rVjlNvuJA80NENRPaGymEcRqKcC4EHrXpumJ7MJKlqZ2Rcj34USvh-FGZQbI_ebblLyXenANUeI_gwzy6FfAJLNdGKat7-aI_ePkJv86mktp3te2GY0aJnjaIb5UsGKGGyS4lHV-4tJXbtx2792FaDXfuxa3K_eaCx6RDKv-T_md5spsll6w4lgr351jeAEKq15pr9BfvqnSs</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Tu, Mingxing</creator><creator>Xianhang Wang</creator><creator>Li Huang</creator><creator>Rongrong Guo</creator><creator>Hongjing Zhang</creator><creator>Junshe Cai</creator><creator>Xiping Wang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160601</creationdate><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><author>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Cauliflower mosaic virus</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Germination</topic><topic>Grapes</topic><topic>Leucine</topic><topic>leucine zipper</topic><topic>Leucine zipper proteins</topic><topic>Life Sciences</topic><topic>mature plants</topic><topic>Original Article</topic><topic>Osmotic stress</topic><topic>Overexpression</topic><topic>Oxidative stress</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>promoter regions</topic><topic>Salinity tolerance</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>stress response</topic><topic>Transcription factors</topic><topic>Transgenic plants</topic><topic>Viruses</topic><topic>Vitaceae</topic><topic>Vitis</topic><topic>Vitis heyneana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Xianhang Wang</creatorcontrib><creatorcontrib>Li Huang</creatorcontrib><creatorcontrib>Rongrong Guo</creatorcontrib><creatorcontrib>Hongjing Zhang</creatorcontrib><creatorcontrib>Junshe Cai</creatorcontrib><creatorcontrib>Xiping Wang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant cell, tissue and organ culture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Mingxing</au><au>Xianhang Wang</au><au>Li Huang</au><au>Rongrong Guo</au><au>Hongjing Zhang</au><au>Junshe Cai</au><au>Xiping Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</atitle><jtitle>Plant cell, tissue and organ culture</jtitle><stitle>Plant Cell Tiss Organ Cult</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>125</volume><issue>3</issue><spage>537</spage><epage>551</epage><pages>537-551</pages><issn>0167-6857</issn><eissn>1573-5044</eissn><abstract>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11240-016-0969-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6857 |
ispartof | Plant cell, tissue and organ culture, 2016-06, Vol.125 (3), p.537-551 |
issn | 0167-6857 1573-5044 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808718406 |
source | Springer Nature - Complete Springer Journals |
subjects | Abiotic stress Abscisic acid Arabidopsis Arabidopsis thaliana Biomedical and Life Sciences Cauliflower mosaic virus Drought drought tolerance Gene expression gene expression regulation gene overexpression genes Germination Grapes Leucine leucine zipper Leucine zipper proteins Life Sciences mature plants Original Article Osmotic stress Overexpression Oxidative stress Plant Genetics and Genomics Plant Pathology Plant Physiology Plant Sciences promoter regions Salinity tolerance Seed germination Seedlings Signal transduction stress response Transcription factors Transgenic plants Viruses Vitaceae Vitis Vitis heyneana |
title | Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20a%20grape%20bZIP%20transcription%20factor,%20VqbZIP39,%20in%20transgenic%20Arabidopsis%20thaliana%20confers%20tolerance%20of%20multiple%20abiotic%20stresses&rft.jtitle=Plant%20cell,%20tissue%20and%20organ%20culture&rft.au=Tu,%20Mingxing&rft.date=2016-06-01&rft.volume=125&rft.issue=3&rft.spage=537&rft.epage=551&rft.pages=537-551&rft.issn=0167-6857&rft.eissn=1573-5044&rft_id=info:doi/10.1007/s11240-016-0969-6&rft_dat=%3Cproquest_cross%3E1808718406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259398523&rft_id=info:pmid/&rfr_iscdi=true |