Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses

The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2016-06, Vol.125 (3), p.537-551
Hauptverfasser: Tu, Mingxing, Xianhang Wang, Li Huang, Rongrong Guo, Hongjing Zhang, Junshe Cai, Xiping Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 3
container_start_page 537
container_title Plant cell, tissue and organ culture
container_volume 125
creator Tu, Mingxing
Xianhang Wang
Li Huang
Rongrong Guo
Hongjing Zhang
Junshe Cai
Xiping Wang
description The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.
doi_str_mv 10.1007/s11240-016-0969-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808718406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808718406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMo-Hz6AVwZcOOio8nk_7KUqoWCgtaFm5DJZJ4p85Jpbh7Y7-CHNsMUhC6EQCDnd8695CD0mpL3lBD1ASjtOekIlR0x0nTyCdpRoVgnCOdP0a4JqpNaqOfoBcAtIUQyTnfoz-XvpQSAmBPOE3b4UNwS8PDz6iuuxSXwJS51VSfnay5n-MfdKjJzhmPakENI0ePz4oY45gUi4PrLzdElh31OUyjtIc-hoT6sQ46nucZlDrgZcm1WqOsKAV6iZ5ObIbx6uPfo5uPl94vP3fWXT1cX59edZ4rVjlNvuJA80NENRPaGymEcRqKcC4EHrXpumJ7MJKlqZ2Rcj34USvh-FGZQbI_ebblLyXenANUeI_gwzy6FfAJLNdGKat7-aI_ePkJv86mktp3te2GY0aJnjaIb5UsGKGGyS4lHV-4tJXbtx2792FaDXfuxa3K_eaCx6RDKv-T_md5spsll6w4lgr351jeAEKq15pr9BfvqnSs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259398523</pqid></control><display><type>article</type><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><source>Springer Nature - Complete Springer Journals</source><creator>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</creator><creatorcontrib>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</creatorcontrib><description>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</description><identifier>ISSN: 0167-6857</identifier><identifier>EISSN: 1573-5044</identifier><identifier>DOI: 10.1007/s11240-016-0969-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Abiotic stress ; Abscisic acid ; Arabidopsis ; Arabidopsis thaliana ; Biomedical and Life Sciences ; Cauliflower mosaic virus ; Drought ; drought tolerance ; Gene expression ; gene expression regulation ; gene overexpression ; genes ; Germination ; Grapes ; Leucine ; leucine zipper ; Leucine zipper proteins ; Life Sciences ; mature plants ; Original Article ; Osmotic stress ; Overexpression ; Oxidative stress ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; promoter regions ; Salinity tolerance ; Seed germination ; Seedlings ; Signal transduction ; stress response ; Transcription factors ; Transgenic plants ; Viruses ; Vitaceae ; Vitis ; Vitis heyneana</subject><ispartof>Plant cell, tissue and organ culture, 2016-06, Vol.125 (3), p.537-551</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Plant Cell, Tissue and Organ Culture (PCTOC) is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</citedby><cites>FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11240-016-0969-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11240-016-0969-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Xianhang Wang</creatorcontrib><creatorcontrib>Li Huang</creatorcontrib><creatorcontrib>Rongrong Guo</creatorcontrib><creatorcontrib>Hongjing Zhang</creatorcontrib><creatorcontrib>Junshe Cai</creatorcontrib><creatorcontrib>Xiping Wang</creatorcontrib><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><title>Plant cell, tissue and organ culture</title><addtitle>Plant Cell Tiss Organ Cult</addtitle><description>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biomedical and Life Sciences</subject><subject>Cauliflower mosaic virus</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Gene expression</subject><subject>gene expression regulation</subject><subject>gene overexpression</subject><subject>genes</subject><subject>Germination</subject><subject>Grapes</subject><subject>Leucine</subject><subject>leucine zipper</subject><subject>Leucine zipper proteins</subject><subject>Life Sciences</subject><subject>mature plants</subject><subject>Original Article</subject><subject>Osmotic stress</subject><subject>Overexpression</subject><subject>Oxidative stress</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>promoter regions</subject><subject>Salinity tolerance</subject><subject>Seed germination</subject><subject>Seedlings</subject><subject>Signal transduction</subject><subject>stress response</subject><subject>Transcription factors</subject><subject>Transgenic plants</subject><subject>Viruses</subject><subject>Vitaceae</subject><subject>Vitis</subject><subject>Vitis heyneana</subject><issn>0167-6857</issn><issn>1573-5044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9rFTEUxYMo-Hz6AVwZcOOio8nk_7KUqoWCgtaFm5DJZJ4p85Jpbh7Y7-CHNsMUhC6EQCDnd8695CD0mpL3lBD1ASjtOekIlR0x0nTyCdpRoVgnCOdP0a4JqpNaqOfoBcAtIUQyTnfoz-XvpQSAmBPOE3b4UNwS8PDz6iuuxSXwJS51VSfnay5n-MfdKjJzhmPakENI0ePz4oY45gUi4PrLzdElh31OUyjtIc-hoT6sQ46nucZlDrgZcm1WqOsKAV6iZ5ObIbx6uPfo5uPl94vP3fWXT1cX59edZ4rVjlNvuJA80NENRPaGymEcRqKcC4EHrXpumJ7MJKlqZ2Rcj34USvh-FGZQbI_ebblLyXenANUeI_gwzy6FfAJLNdGKat7-aI_ePkJv86mktp3te2GY0aJnjaIb5UsGKGGyS4lHV-4tJXbtx2792FaDXfuxa3K_eaCx6RDKv-T_md5spsll6w4lgr351jeAEKq15pr9BfvqnSs</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Tu, Mingxing</creator><creator>Xianhang Wang</creator><creator>Li Huang</creator><creator>Rongrong Guo</creator><creator>Hongjing Zhang</creator><creator>Junshe Cai</creator><creator>Xiping Wang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160601</creationdate><title>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</title><author>Tu, Mingxing ; Xianhang Wang ; Li Huang ; Rongrong Guo ; Hongjing Zhang ; Junshe Cai ; Xiping Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-41c94564e1dab062916bdbd07aaee4e8724938f9f617617d348dcd575c2d59b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biomedical and Life Sciences</topic><topic>Cauliflower mosaic virus</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Gene expression</topic><topic>gene expression regulation</topic><topic>gene overexpression</topic><topic>genes</topic><topic>Germination</topic><topic>Grapes</topic><topic>Leucine</topic><topic>leucine zipper</topic><topic>Leucine zipper proteins</topic><topic>Life Sciences</topic><topic>mature plants</topic><topic>Original Article</topic><topic>Osmotic stress</topic><topic>Overexpression</topic><topic>Oxidative stress</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>promoter regions</topic><topic>Salinity tolerance</topic><topic>Seed germination</topic><topic>Seedlings</topic><topic>Signal transduction</topic><topic>stress response</topic><topic>Transcription factors</topic><topic>Transgenic plants</topic><topic>Viruses</topic><topic>Vitaceae</topic><topic>Vitis</topic><topic>Vitis heyneana</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Xianhang Wang</creatorcontrib><creatorcontrib>Li Huang</creatorcontrib><creatorcontrib>Rongrong Guo</creatorcontrib><creatorcontrib>Hongjing Zhang</creatorcontrib><creatorcontrib>Junshe Cai</creatorcontrib><creatorcontrib>Xiping Wang</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant cell, tissue and organ culture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Mingxing</au><au>Xianhang Wang</au><au>Li Huang</au><au>Rongrong Guo</au><au>Hongjing Zhang</au><au>Junshe Cai</au><au>Xiping Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses</atitle><jtitle>Plant cell, tissue and organ culture</jtitle><stitle>Plant Cell Tiss Organ Cult</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>125</volume><issue>3</issue><spage>537</spage><epage>551</epage><pages>537-551</pages><issn>0167-6857</issn><eissn>1573-5044</eissn><abstract>The basic region/leucine zipper (bZIP) transcription factors are known to play key roles in response to abiotic stress. In this study, a bZIP gene (VqbZIP39) was isolated from grape (Vitis quinquangularis) and constitutively expressed in Arabidopsis under control of the cauliflower mosaic virus 35S promoter. The transgenic Arabidopsis thaliana plants showed enhance salt and drought stress tolerance during seed germination and in the seedling and mature plant stages. Various physiological parameters related to stress responses were analyzed to gain further insight into the role of VqbZIP39 and it was found that osmotic stress caused less damage to the transgenic seedlings than to the corresponding wild type plants. This correlated with an increase in endogenous ABA content as a consequence of the constitutive over-expression of VqbZIP39, and the up-regulated expression of stress-inducible target genes associated with tolerance of drought, high-salt, and oxidative stresses. Our results suggest that the expression of VqbZIP39 in A. thaliana likely enhances the tolerance to multiple abiotic stresses through the ABA signaling pathway, and may therefore have a similar function in the response to abiotic stresses in grape.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11240-016-0969-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6857
ispartof Plant cell, tissue and organ culture, 2016-06, Vol.125 (3), p.537-551
issn 0167-6857
1573-5044
language eng
recordid cdi_proquest_miscellaneous_1808718406
source Springer Nature - Complete Springer Journals
subjects Abiotic stress
Abscisic acid
Arabidopsis
Arabidopsis thaliana
Biomedical and Life Sciences
Cauliflower mosaic virus
Drought
drought tolerance
Gene expression
gene expression regulation
gene overexpression
genes
Germination
Grapes
Leucine
leucine zipper
Leucine zipper proteins
Life Sciences
mature plants
Original Article
Osmotic stress
Overexpression
Oxidative stress
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
promoter regions
Salinity tolerance
Seed germination
Seedlings
Signal transduction
stress response
Transcription factors
Transgenic plants
Viruses
Vitaceae
Vitis
Vitis heyneana
title Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expression%20of%20a%20grape%20bZIP%20transcription%20factor,%20VqbZIP39,%20in%20transgenic%20Arabidopsis%20thaliana%20confers%20tolerance%20of%20multiple%20abiotic%20stresses&rft.jtitle=Plant%20cell,%20tissue%20and%20organ%20culture&rft.au=Tu,%20Mingxing&rft.date=2016-06-01&rft.volume=125&rft.issue=3&rft.spage=537&rft.epage=551&rft.pages=537-551&rft.issn=0167-6857&rft.eissn=1573-5044&rft_id=info:doi/10.1007/s11240-016-0969-6&rft_dat=%3Cproquest_cross%3E1808718406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259398523&rft_id=info:pmid/&rfr_iscdi=true