Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates

We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O sub(2)/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global biogeochemical cycles 2016-05, Vol.30 (5), p.735-752
Hauptverfasser: Li, Zuchuan, Cassar, Nicolas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 5
container_start_page 735
container_title Global biogeochemical cycles
container_volume 30
creator Li, Zuchuan
Cassar, Nicolas
description We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O sub(2)/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net primary production (NPP), phytoplankton size composition, and inherent optical properties. The first algorithm is based on genetic programming (GP) which simultaneously searches for the optimal form and coefficients of NCP equations. We find that several GP solutions are consistent with NPP and SST being strong predictors of NCP. The second algorithm uses support vector regression (SVR) to optimize a numerical relationship between O sub(2)/Ar-NCP measurements and satellite observations. Both statistical algorithms can predict NCP relatively well, with a coefficient of determination (R super(2)) of 0.68 for GP and 0.72 for SVR, which is comparable to other algorithms in the literature. However, our new algorithms predict more spatially uniform annual NCP distribution for the world's oceans and higher annual NCP values in the Southern Ocean and the five oligotrophic gyres. Key Points * Two NCP algorithms are developed using O sub(2)/Ar and satellite data * Our algorithms are comparable to others * Our estimates show more spatially uniform distribution than others
doi_str_mv 10.1002/2015GB005314
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808717211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808717211</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18087172113</originalsourceid><addsrcrecordid>eNqVjs1OwzAQhK0KpIafGw-wx3JIu-s4aXIEBPTGAe6Vk7jCKLGL10bi7XElJM6cZkb6ZneEuCFcE6LcSKT6-R6xrkgtREGdUmUnpToTBbZtUzayapbigvkDkVRdd4XgVx3NNNlowHC0c04M_gDORBj8PCdn4zccgx_TEK130Gs2I2TzApz6lbzd3AXwPZvwpU8Ag3bjqXrUwXLmogcf3034u38lzg96YnP9q5di9fT49rAr85vPlLH9bHnIq7QzPvGeWmy3tJVE1T_QH7kIVZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808717211</pqid></control><display><type>article</type><title>Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Li, Zuchuan ; Cassar, Nicolas</creator><creatorcontrib>Li, Zuchuan ; Cassar, Nicolas</creatorcontrib><description>We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O sub(2)/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net primary production (NPP), phytoplankton size composition, and inherent optical properties. The first algorithm is based on genetic programming (GP) which simultaneously searches for the optimal form and coefficients of NCP equations. We find that several GP solutions are consistent with NPP and SST being strong predictors of NCP. The second algorithm uses support vector regression (SVR) to optimize a numerical relationship between O sub(2)/Ar-NCP measurements and satellite observations. Both statistical algorithms can predict NCP relatively well, with a coefficient of determination (R super(2)) of 0.68 for GP and 0.72 for SVR, which is comparable to other algorithms in the literature. However, our new algorithms predict more spatially uniform annual NCP distribution for the world's oceans and higher annual NCP values in the Southern Ocean and the five oligotrophic gyres. Key Points * Two NCP algorithms are developed using O sub(2)/Ar and satellite data * Our algorithms are comparable to others * Our estimates show more spatially uniform distribution than others</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1002/2015GB005314</identifier><language>eng</language><ispartof>Global biogeochemical cycles, 2016-05, Vol.30 (5), p.735-752</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Zuchuan</creatorcontrib><creatorcontrib>Cassar, Nicolas</creatorcontrib><title>Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates</title><title>Global biogeochemical cycles</title><description>We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O sub(2)/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net primary production (NPP), phytoplankton size composition, and inherent optical properties. The first algorithm is based on genetic programming (GP) which simultaneously searches for the optimal form and coefficients of NCP equations. We find that several GP solutions are consistent with NPP and SST being strong predictors of NCP. The second algorithm uses support vector regression (SVR) to optimize a numerical relationship between O sub(2)/Ar-NCP measurements and satellite observations. Both statistical algorithms can predict NCP relatively well, with a coefficient of determination (R super(2)) of 0.68 for GP and 0.72 for SVR, which is comparable to other algorithms in the literature. However, our new algorithms predict more spatially uniform annual NCP distribution for the world's oceans and higher annual NCP values in the Southern Ocean and the five oligotrophic gyres. Key Points * Two NCP algorithms are developed using O sub(2)/Ar and satellite data * Our algorithms are comparable to others * Our estimates show more spatially uniform distribution than others</description><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVjs1OwzAQhK0KpIafGw-wx3JIu-s4aXIEBPTGAe6Vk7jCKLGL10bi7XElJM6cZkb6ZneEuCFcE6LcSKT6-R6xrkgtREGdUmUnpToTBbZtUzayapbigvkDkVRdd4XgVx3NNNlowHC0c04M_gDORBj8PCdn4zccgx_TEK130Gs2I2TzApz6lbzd3AXwPZvwpU8Ag3bjqXrUwXLmogcf3034u38lzg96YnP9q5di9fT49rAr85vPlLH9bHnIq7QzPvGeWmy3tJVE1T_QH7kIVZQ</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Li, Zuchuan</creator><creator>Cassar, Nicolas</creator><scope>7SN</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20160501</creationdate><title>Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates</title><author>Li, Zuchuan ; Cassar, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18087172113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zuchuan</creatorcontrib><creatorcontrib>Cassar, Nicolas</creatorcontrib><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zuchuan</au><au>Cassar, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates</atitle><jtitle>Global biogeochemical cycles</jtitle><date>2016-05-01</date><risdate>2016</risdate><volume>30</volume><issue>5</issue><spage>735</spage><epage>752</epage><pages>735-752</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>We present two statistical algorithms for predicting global oceanic net community production (NCP) from satellite observations. To calibrate these two algorithms, we compiled a large data set of in situ O sub(2)/Ar-NCP and remotely sensed observations, including sea surface temperature (SST), net primary production (NPP), phytoplankton size composition, and inherent optical properties. The first algorithm is based on genetic programming (GP) which simultaneously searches for the optimal form and coefficients of NCP equations. We find that several GP solutions are consistent with NPP and SST being strong predictors of NCP. The second algorithm uses support vector regression (SVR) to optimize a numerical relationship between O sub(2)/Ar-NCP measurements and satellite observations. Both statistical algorithms can predict NCP relatively well, with a coefficient of determination (R super(2)) of 0.68 for GP and 0.72 for SVR, which is comparable to other algorithms in the literature. However, our new algorithms predict more spatially uniform annual NCP distribution for the world's oceans and higher annual NCP values in the Southern Ocean and the five oligotrophic gyres. Key Points * Two NCP algorithms are developed using O sub(2)/Ar and satellite data * Our algorithms are comparable to others * Our estimates show more spatially uniform distribution than others</abstract><doi>10.1002/2015GB005314</doi></addata></record>
fulltext fulltext
identifier ISSN: 0886-6236
ispartof Global biogeochemical cycles, 2016-05, Vol.30 (5), p.735-752
issn 0886-6236
1944-9224
language eng
recordid cdi_proquest_miscellaneous_1808717211
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
title Satellite estimates of net community production based on O sub(2)/Ar observations and comparison to other estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20estimates%20of%20net%20community%20production%20based%20on%20O%20sub(2)/Ar%20observations%20and%20comparison%20to%20other%20estimates&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Li,%20Zuchuan&rft.date=2016-05-01&rft.volume=30&rft.issue=5&rft.spage=735&rft.epage=752&rft.pages=735-752&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1002/2015GB005314&rft_dat=%3Cproquest%3E1808717211%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808717211&rft_id=info:pmid/&rfr_iscdi=true