Nickel-catalysed Suzuki–Miyaura coupling of amides
The Suzuki–Miyaura coupling has become one of the most important and prevalent methods for the construction of C–C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon–h...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2016-01, Vol.8 (1), p.75-79 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 79 |
---|---|
container_issue | 1 |
container_start_page | 75 |
container_title | Nature chemistry |
container_volume | 8 |
creator | Weires, Nicholas A. Baker, Emma L. Garg, Neil K. |
description | The Suzuki–Miyaura coupling has become one of the most important and prevalent methods for the construction of C–C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon–heteroatom bonds that are unreactive towards other transition metals. We report the first nickel-catalysed Suzuki–Miyaura coupling of amides, which proceeds by an uncommon cleavage of the amide C–N bond after
N
-
tert
-butoxycarbonyl activation. The methodology is mild, functional-group tolerant and can be strategically employed in sequential transition-metal-catalysed cross-coupling sequences to unite heterocyclic fragments. These studies demonstrate that amides, despite classically considered inert substrates, can be harnessed as synthons for use in reactions that form C–C bonds through cleavage of the C–N bond using non-precious metal catalysis.
Amides have historically been considered stable and unreactive functional groups because of resonance stabilization. Here, it is demonstrated that Boc-activated amides can be employed in Suzuki–Miyaura couplings using non-precious-metal catalysis. The overall reaction is complementary to the widely employed Weinreb ketone synthesis. |
doi_str_mv | 10.1038/nchem.2388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808714201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808714201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-d76e39d94402895c703b492f678046796698de87105122395289e55b737c208d3</originalsourceid><addsrcrecordid>eNqF0MtKAzEUBuAgitXqxgeQATeiTM39spTiDaou1PWQZjJ12rnUpFnUle_gG_okprYW0YWrHMiX_5AfgAMEewgSedaYZ1v3MJFyA-wgwVhKCVWb65nADtj1fgwhZwTxbdDBnAuCudgB9K40E1ulRs90Nfc2Tx7Ca5iUH2_vt-VcB6cT04ZpVTajpC0SXZe59Xtgq9CVt_urswueLi8e-9fp4P7qpn8-SA3FaJbmgluickUpxFIxIyAZUoULLiSkXCjOlcytFAgyhDFRLCrL2FAQYTCUOemC42Xu1LUvwfpZVpfe2KrSjW2Dz5CE8TXFEP1PBYMUK0R4pEe_6LgNrokfiYpzSBhlC3WyVMa13jtbZFNX1trNMwSzRe3ZV-3ZovaID1eRYVjbfE2_e47gdAl8vGpG1v3Y-TfuE3wLiX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766035456</pqid></control><display><type>article</type><title>Nickel-catalysed Suzuki–Miyaura coupling of amides</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Weires, Nicholas A. ; Baker, Emma L. ; Garg, Neil K.</creator><creatorcontrib>Weires, Nicholas A. ; Baker, Emma L. ; Garg, Neil K.</creatorcontrib><description>The Suzuki–Miyaura coupling has become one of the most important and prevalent methods for the construction of C–C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon–heteroatom bonds that are unreactive towards other transition metals. We report the first nickel-catalysed Suzuki–Miyaura coupling of amides, which proceeds by an uncommon cleavage of the amide C–N bond after
N
-
tert
-butoxycarbonyl activation. The methodology is mild, functional-group tolerant and can be strategically employed in sequential transition-metal-catalysed cross-coupling sequences to unite heterocyclic fragments. These studies demonstrate that amides, despite classically considered inert substrates, can be harnessed as synthons for use in reactions that form C–C bonds through cleavage of the C–N bond using non-precious metal catalysis.
Amides have historically been considered stable and unreactive functional groups because of resonance stabilization. Here, it is demonstrated that Boc-activated amides can be employed in Suzuki–Miyaura couplings using non-precious-metal catalysis. The overall reaction is complementary to the widely employed Weinreb ketone synthesis.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2388</identifier><identifier>PMID: 26673267</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 140/58 ; 639/638/403/933 ; 639/638/549/933 ; Amides ; Amides - chemistry ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemistry ; Chemistry/Food Science ; Inorganic Chemistry ; Ketones - chemical synthesis ; Ketones - chemistry ; Molecular Structure ; Nickel ; Nickel - chemistry ; Organic Chemistry ; Oxidative Coupling ; Palladium ; Physical Chemistry</subject><ispartof>Nature chemistry, 2016-01, Vol.8 (1), p.75-79</ispartof><rights>Springer Nature Limited 2015</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-d76e39d94402895c703b492f678046796698de87105122395289e55b737c208d3</citedby><cites>FETCH-LOGICAL-c421t-d76e39d94402895c703b492f678046796698de87105122395289e55b737c208d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2388$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2388$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26673267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weires, Nicholas A.</creatorcontrib><creatorcontrib>Baker, Emma L.</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><title>Nickel-catalysed Suzuki–Miyaura coupling of amides</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The Suzuki–Miyaura coupling has become one of the most important and prevalent methods for the construction of C–C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon–heteroatom bonds that are unreactive towards other transition metals. We report the first nickel-catalysed Suzuki–Miyaura coupling of amides, which proceeds by an uncommon cleavage of the amide C–N bond after
N
-
tert
-butoxycarbonyl activation. The methodology is mild, functional-group tolerant and can be strategically employed in sequential transition-metal-catalysed cross-coupling sequences to unite heterocyclic fragments. These studies demonstrate that amides, despite classically considered inert substrates, can be harnessed as synthons for use in reactions that form C–C bonds through cleavage of the C–N bond using non-precious metal catalysis.
Amides have historically been considered stable and unreactive functional groups because of resonance stabilization. Here, it is demonstrated that Boc-activated amides can be employed in Suzuki–Miyaura couplings using non-precious-metal catalysis. The overall reaction is complementary to the widely employed Weinreb ketone synthesis.</description><subject>140/131</subject><subject>140/58</subject><subject>639/638/403/933</subject><subject>639/638/549/933</subject><subject>Amides</subject><subject>Amides - chemistry</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Inorganic Chemistry</subject><subject>Ketones - chemical synthesis</subject><subject>Ketones - chemistry</subject><subject>Molecular Structure</subject><subject>Nickel</subject><subject>Nickel - chemistry</subject><subject>Organic Chemistry</subject><subject>Oxidative Coupling</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MtKAzEUBuAgitXqxgeQATeiTM39spTiDaou1PWQZjJ12rnUpFnUle_gG_okprYW0YWrHMiX_5AfgAMEewgSedaYZ1v3MJFyA-wgwVhKCVWb65nADtj1fgwhZwTxbdDBnAuCudgB9K40E1ulRs90Nfc2Tx7Ca5iUH2_vt-VcB6cT04ZpVTajpC0SXZe59Xtgq9CVt_urswueLi8e-9fp4P7qpn8-SA3FaJbmgluickUpxFIxIyAZUoULLiSkXCjOlcytFAgyhDFRLCrL2FAQYTCUOemC42Xu1LUvwfpZVpfe2KrSjW2Dz5CE8TXFEP1PBYMUK0R4pEe_6LgNrokfiYpzSBhlC3WyVMa13jtbZFNX1trNMwSzRe3ZV-3ZovaID1eRYVjbfE2_e47gdAl8vGpG1v3Y-TfuE3wLiX0</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Weires, Nicholas A.</creator><creator>Baker, Emma L.</creator><creator>Garg, Neil K.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20160101</creationdate><title>Nickel-catalysed Suzuki–Miyaura coupling of amides</title><author>Weires, Nicholas A. ; Baker, Emma L. ; Garg, Neil K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-d76e39d94402895c703b492f678046796698de87105122395289e55b737c208d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>140/131</topic><topic>140/58</topic><topic>639/638/403/933</topic><topic>639/638/549/933</topic><topic>Amides</topic><topic>Amides - chemistry</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Inorganic Chemistry</topic><topic>Ketones - chemical synthesis</topic><topic>Ketones - chemistry</topic><topic>Molecular Structure</topic><topic>Nickel</topic><topic>Nickel - chemistry</topic><topic>Organic Chemistry</topic><topic>Oxidative Coupling</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weires, Nicholas A.</creatorcontrib><creatorcontrib>Baker, Emma L.</creatorcontrib><creatorcontrib>Garg, Neil K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weires, Nicholas A.</au><au>Baker, Emma L.</au><au>Garg, Neil K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nickel-catalysed Suzuki–Miyaura coupling of amides</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>8</volume><issue>1</issue><spage>75</spage><epage>79</epage><pages>75-79</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The Suzuki–Miyaura coupling has become one of the most important and prevalent methods for the construction of C–C bonds. Although palladium catalysis has historically dominated the field, the use of nickel catalysis has become increasingly widespread because of its unique ability to cleave carbon–heteroatom bonds that are unreactive towards other transition metals. We report the first nickel-catalysed Suzuki–Miyaura coupling of amides, which proceeds by an uncommon cleavage of the amide C–N bond after
N
-
tert
-butoxycarbonyl activation. The methodology is mild, functional-group tolerant and can be strategically employed in sequential transition-metal-catalysed cross-coupling sequences to unite heterocyclic fragments. These studies demonstrate that amides, despite classically considered inert substrates, can be harnessed as synthons for use in reactions that form C–C bonds through cleavage of the C–N bond using non-precious metal catalysis.
Amides have historically been considered stable and unreactive functional groups because of resonance stabilization. Here, it is demonstrated that Boc-activated amides can be employed in Suzuki–Miyaura couplings using non-precious-metal catalysis. The overall reaction is complementary to the widely employed Weinreb ketone synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26673267</pmid><doi>10.1038/nchem.2388</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2016-01, Vol.8 (1), p.75-79 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808714201 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | 140/131 140/58 639/638/403/933 639/638/549/933 Amides Amides - chemistry Analytical Chemistry Biochemistry Catalysis Chemistry Chemistry/Food Science Inorganic Chemistry Ketones - chemical synthesis Ketones - chemistry Molecular Structure Nickel Nickel - chemistry Organic Chemistry Oxidative Coupling Palladium Physical Chemistry |
title | Nickel-catalysed Suzuki–Miyaura coupling of amides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nickel-catalysed%20Suzuki%E2%80%93Miyaura%20coupling%20of%20amides&rft.jtitle=Nature%20chemistry&rft.au=Weires,%20Nicholas%20A.&rft.date=2016-01-01&rft.volume=8&rft.issue=1&rft.spage=75&rft.epage=79&rft.pages=75-79&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2388&rft_dat=%3Cproquest_cross%3E1808714201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766035456&rft_id=info:pmid/26673267&rfr_iscdi=true |