An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts

Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2016-07, Vol.211 (1), p.265-275
Hauptverfasser: Vannini, Candida, Carpentieri, Andrea, Salvioli, Alessandra, Novero, Mara, Marsoni, Milena, Testa, Lorenzo, Pinto, Maria Concetta, Amoresano, Angela, Ortolani, Francesca, Bracale, Marcella, Bonfante, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 275
container_issue 1
container_start_page 265
container_title The New phytologist
container_volume 211
creator Vannini, Candida
Carpentieri, Andrea
Salvioli, Alessandra
Novero, Mara
Marsoni, Milena
Testa, Lorenzo
Pinto, Maria Concetta
Amoresano, Angela
Ortolani, Francesca
Bracale, Marcella
Bonfante, Paola
description Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.
doi_str_mv 10.1111/nph.13895
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808713266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.211.1.265</jstor_id><sourcerecordid>newphytologist.211.1.265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</originalsourceid><addsrcrecordid>eNqFkcFvFCEYxYmxsWv14D9gSLzUw7QDDAx4axq1TZrqQRNvE4b5psM6AyMwruvN_1y22_Zg0khCSOD33vfIQ-gVKU9IXqduHk4Ik4o_QStSCVVIwuqnaFWWVBaiEt8O0fMY12VZKi7oM3RIhSIVrekK_Tlz2LoEofOTtg47SBsfvr_DaQAMrvOtNvnVLhP2PdZ42hofwmB_6xH3i7tZIp6Dn3yCiLVL1v-ynU72J-AAcfYu5vts2_o03PJZpl2H5zHDePAxxRfooNdjhJd35xH6-uH9l_OL4urTx8vzs6vCcMp5wSWtezASNOeyrWWvqdZEaqip6OqOEskVZ9BKpqiQpgIgldGiN7Tbbc6O0PHeN-f9sUBMzWSjgTEnAb_EhshS1oRRIf6P1opRIlglM_rmH3Ttl-DyR3YUrRRXVZWpt3vKBB9jgL6Zg5102DakbHYVNrnC5rbCzL6-c1zaCboH8r6zDJzugY0dYfu4U3P9-eLestgr1jH58KBwsJmHbfKjv7E5OM1iksdw9hftBLhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792495944</pqid></control><display><type>article</type><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>JSTOR</source><creator>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</creator><creatorcontrib>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</creatorcontrib><description>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13895</identifier><identifier>PMID: 26914272</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>antioxidant status ; Antioxidants - metabolism ; arbuscular mycorrhizal fungi (AMF) ; Bacterial Proteins - metabolism ; Burkholderiaceae - physiology ; Calcium Signaling ; carbonylated proteins ; endosymbiotic bacteria ; Fungal Proteins - metabolism ; Gigaspora margarita ; Glomeromycota - physiology ; Lipid Metabolism ; Loteae - microbiology ; Mycorrhizae - physiology ; plant host ; proteome profiling ; Reactive Oxygen Species - metabolism ; Symbiosis - physiology ; Trifolium - microbiology</subject><ispartof>The New phytologist, 2016-07, Vol.211 (1), p.265-275</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2016 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</citedby><cites>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.211.1.265$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.211.1.265$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,1434,27928,27929,45578,45579,46413,46837,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26914272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vannini, Candida</creatorcontrib><creatorcontrib>Carpentieri, Andrea</creatorcontrib><creatorcontrib>Salvioli, Alessandra</creatorcontrib><creatorcontrib>Novero, Mara</creatorcontrib><creatorcontrib>Marsoni, Milena</creatorcontrib><creatorcontrib>Testa, Lorenzo</creatorcontrib><creatorcontrib>Pinto, Maria Concetta</creatorcontrib><creatorcontrib>Amoresano, Angela</creatorcontrib><creatorcontrib>Ortolani, Francesca</creatorcontrib><creatorcontrib>Bracale, Marcella</creatorcontrib><creatorcontrib>Bonfante, Paola</creatorcontrib><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</description><subject>antioxidant status</subject><subject>Antioxidants - metabolism</subject><subject>arbuscular mycorrhizal fungi (AMF)</subject><subject>Bacterial Proteins - metabolism</subject><subject>Burkholderiaceae - physiology</subject><subject>Calcium Signaling</subject><subject>carbonylated proteins</subject><subject>endosymbiotic bacteria</subject><subject>Fungal Proteins - metabolism</subject><subject>Gigaspora margarita</subject><subject>Glomeromycota - physiology</subject><subject>Lipid Metabolism</subject><subject>Loteae - microbiology</subject><subject>Mycorrhizae - physiology</subject><subject>plant host</subject><subject>proteome profiling</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Symbiosis - physiology</subject><subject>Trifolium - microbiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFvFCEYxYmxsWv14D9gSLzUw7QDDAx4axq1TZrqQRNvE4b5psM6AyMwruvN_1y22_Zg0khCSOD33vfIQ-gVKU9IXqduHk4Ik4o_QStSCVVIwuqnaFWWVBaiEt8O0fMY12VZKi7oM3RIhSIVrekK_Tlz2LoEofOTtg47SBsfvr_DaQAMrvOtNvnVLhP2PdZ42hofwmB_6xH3i7tZIp6Dn3yCiLVL1v-ynU72J-AAcfYu5vts2_o03PJZpl2H5zHDePAxxRfooNdjhJd35xH6-uH9l_OL4urTx8vzs6vCcMp5wSWtezASNOeyrWWvqdZEaqip6OqOEskVZ9BKpqiQpgIgldGiN7Tbbc6O0PHeN-f9sUBMzWSjgTEnAb_EhshS1oRRIf6P1opRIlglM_rmH3Ttl-DyR3YUrRRXVZWpt3vKBB9jgL6Zg5102DakbHYVNrnC5rbCzL6-c1zaCboH8r6zDJzugY0dYfu4U3P9-eLestgr1jH58KBwsJmHbfKjv7E5OM1iksdw9hftBLhK</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Vannini, Candida</creator><creator>Carpentieri, Andrea</creator><creator>Salvioli, Alessandra</creator><creator>Novero, Mara</creator><creator>Marsoni, Milena</creator><creator>Testa, Lorenzo</creator><creator>Pinto, Maria Concetta</creator><creator>Amoresano, Angela</creator><creator>Ortolani, Francesca</creator><creator>Bracale, Marcella</creator><creator>Bonfante, Paola</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><author>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>antioxidant status</topic><topic>Antioxidants - metabolism</topic><topic>arbuscular mycorrhizal fungi (AMF)</topic><topic>Bacterial Proteins - metabolism</topic><topic>Burkholderiaceae - physiology</topic><topic>Calcium Signaling</topic><topic>carbonylated proteins</topic><topic>endosymbiotic bacteria</topic><topic>Fungal Proteins - metabolism</topic><topic>Gigaspora margarita</topic><topic>Glomeromycota - physiology</topic><topic>Lipid Metabolism</topic><topic>Loteae - microbiology</topic><topic>Mycorrhizae - physiology</topic><topic>plant host</topic><topic>proteome profiling</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Symbiosis - physiology</topic><topic>Trifolium - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vannini, Candida</creatorcontrib><creatorcontrib>Carpentieri, Andrea</creatorcontrib><creatorcontrib>Salvioli, Alessandra</creatorcontrib><creatorcontrib>Novero, Mara</creatorcontrib><creatorcontrib>Marsoni, Milena</creatorcontrib><creatorcontrib>Testa, Lorenzo</creatorcontrib><creatorcontrib>Pinto, Maria Concetta</creatorcontrib><creatorcontrib>Amoresano, Angela</creatorcontrib><creatorcontrib>Ortolani, Francesca</creatorcontrib><creatorcontrib>Bracale, Marcella</creatorcontrib><creatorcontrib>Bonfante, Paola</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vannini, Candida</au><au>Carpentieri, Andrea</au><au>Salvioli, Alessandra</au><au>Novero, Mara</au><au>Marsoni, Milena</au><au>Testa, Lorenzo</au><au>Pinto, Maria Concetta</au><au>Amoresano, Angela</au><au>Ortolani, Francesca</au><au>Bracale, Marcella</au><au>Bonfante, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016-07</date><risdate>2016</risdate><volume>211</volume><issue>1</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24. Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants. This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>26914272</pmid><doi>10.1111/nph.13895</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2016-07, Vol.211 (1), p.265-275
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_1808713266
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); JSTOR
subjects antioxidant status
Antioxidants - metabolism
arbuscular mycorrhizal fungi (AMF)
Bacterial Proteins - metabolism
Burkholderiaceae - physiology
Calcium Signaling
carbonylated proteins
endosymbiotic bacteria
Fungal Proteins - metabolism
Gigaspora margarita
Glomeromycota - physiology
Lipid Metabolism
Loteae - microbiology
Mycorrhizae - physiology
plant host
proteome profiling
Reactive Oxygen Species - metabolism
Symbiosis - physiology
Trifolium - microbiology
title An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interdomain%20network:%20the%20endobacterium%20of%20a%20mycorrhizal%20fungus%20promotes%20antioxidative%20responses%20in%20both%20fungal%20and%20plant%20hosts&rft.jtitle=The%20New%20phytologist&rft.au=Vannini,%20Candida&rft.date=2016-07&rft.volume=211&rft.issue=1&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13895&rft_dat=%3Cjstor_proqu%3Enewphytologist.211.1.265%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792495944&rft_id=info:pmid/26914272&rft_jstor_id=newphytologist.211.1.265&rfr_iscdi=true