An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts
Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host. RNA-seq analysis of the AMF Gigaspora margarita in the presence an...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2016-07, Vol.211 (1), p.265-275 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 1 |
container_start_page | 265 |
container_title | The New phytologist |
container_volume | 211 |
creator | Vannini, Candida Carpentieri, Andrea Salvioli, Alessandra Novero, Mara Marsoni, Milena Testa, Lorenzo Pinto, Maria Concetta Amoresano, Angela Ortolani, Francesca Bracale, Marcella Bonfante, Paola |
description | Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host.
RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24.
Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants.
This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions. |
doi_str_mv | 10.1111/nph.13895 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808713266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>newphytologist.211.1.265</jstor_id><sourcerecordid>newphytologist.211.1.265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</originalsourceid><addsrcrecordid>eNqFkcFvFCEYxYmxsWv14D9gSLzUw7QDDAx4axq1TZrqQRNvE4b5psM6AyMwruvN_1y22_Zg0khCSOD33vfIQ-gVKU9IXqduHk4Ik4o_QStSCVVIwuqnaFWWVBaiEt8O0fMY12VZKi7oM3RIhSIVrekK_Tlz2LoEofOTtg47SBsfvr_DaQAMrvOtNvnVLhP2PdZ42hofwmB_6xH3i7tZIp6Dn3yCiLVL1v-ynU72J-AAcfYu5vts2_o03PJZpl2H5zHDePAxxRfooNdjhJd35xH6-uH9l_OL4urTx8vzs6vCcMp5wSWtezASNOeyrWWvqdZEaqip6OqOEskVZ9BKpqiQpgIgldGiN7Tbbc6O0PHeN-f9sUBMzWSjgTEnAb_EhshS1oRRIf6P1opRIlglM_rmH3Ttl-DyR3YUrRRXVZWpt3vKBB9jgL6Zg5102DakbHYVNrnC5rbCzL6-c1zaCboH8r6zDJzugY0dYfu4U3P9-eLestgr1jH58KBwsJmHbfKjv7E5OM1iksdw9hftBLhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792495944</pqid></control><display><type>article</type><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>JSTOR</source><creator>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</creator><creatorcontrib>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</creatorcontrib><description>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host.
RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24.
Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants.
This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.13895</identifier><identifier>PMID: 26914272</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>antioxidant status ; Antioxidants - metabolism ; arbuscular mycorrhizal fungi (AMF) ; Bacterial Proteins - metabolism ; Burkholderiaceae - physiology ; Calcium Signaling ; carbonylated proteins ; endosymbiotic bacteria ; Fungal Proteins - metabolism ; Gigaspora margarita ; Glomeromycota - physiology ; Lipid Metabolism ; Loteae - microbiology ; Mycorrhizae - physiology ; plant host ; proteome profiling ; Reactive Oxygen Species - metabolism ; Symbiosis - physiology ; Trifolium - microbiology</subject><ispartof>The New phytologist, 2016-07, Vol.211 (1), p.265-275</ispartof><rights>2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust</rights><rights>2016 The Authors. New Phytologist © 2016 New Phytologist Trust.</rights><rights>Copyright © 2016 New Phytologist Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</citedby><cites>FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/newphytologist.211.1.265$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/newphytologist.211.1.265$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,1434,27928,27929,45578,45579,46413,46837,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26914272$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vannini, Candida</creatorcontrib><creatorcontrib>Carpentieri, Andrea</creatorcontrib><creatorcontrib>Salvioli, Alessandra</creatorcontrib><creatorcontrib>Novero, Mara</creatorcontrib><creatorcontrib>Marsoni, Milena</creatorcontrib><creatorcontrib>Testa, Lorenzo</creatorcontrib><creatorcontrib>Pinto, Maria Concetta</creatorcontrib><creatorcontrib>Amoresano, Angela</creatorcontrib><creatorcontrib>Ortolani, Francesca</creatorcontrib><creatorcontrib>Bracale, Marcella</creatorcontrib><creatorcontrib>Bonfante, Paola</creatorcontrib><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host.
RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24.
Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants.
This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</description><subject>antioxidant status</subject><subject>Antioxidants - metabolism</subject><subject>arbuscular mycorrhizal fungi (AMF)</subject><subject>Bacterial Proteins - metabolism</subject><subject>Burkholderiaceae - physiology</subject><subject>Calcium Signaling</subject><subject>carbonylated proteins</subject><subject>endosymbiotic bacteria</subject><subject>Fungal Proteins - metabolism</subject><subject>Gigaspora margarita</subject><subject>Glomeromycota - physiology</subject><subject>Lipid Metabolism</subject><subject>Loteae - microbiology</subject><subject>Mycorrhizae - physiology</subject><subject>plant host</subject><subject>proteome profiling</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Symbiosis - physiology</subject><subject>Trifolium - microbiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFvFCEYxYmxsWv14D9gSLzUw7QDDAx4axq1TZrqQRNvE4b5psM6AyMwruvN_1y22_Zg0khCSOD33vfIQ-gVKU9IXqduHk4Ik4o_QStSCVVIwuqnaFWWVBaiEt8O0fMY12VZKi7oM3RIhSIVrekK_Tlz2LoEofOTtg47SBsfvr_DaQAMrvOtNvnVLhP2PdZ42hofwmB_6xH3i7tZIp6Dn3yCiLVL1v-ynU72J-AAcfYu5vts2_o03PJZpl2H5zHDePAxxRfooNdjhJd35xH6-uH9l_OL4urTx8vzs6vCcMp5wSWtezASNOeyrWWvqdZEaqip6OqOEskVZ9BKpqiQpgIgldGiN7Tbbc6O0PHeN-f9sUBMzWSjgTEnAb_EhshS1oRRIf6P1opRIlglM_rmH3Ttl-DyR3YUrRRXVZWpt3vKBB9jgL6Zg5102DakbHYVNrnC5rbCzL6-c1zaCboH8r6zDJzugY0dYfu4U3P9-eLestgr1jH58KBwsJmHbfKjv7E5OM1iksdw9hftBLhK</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Vannini, Candida</creator><creator>Carpentieri, Andrea</creator><creator>Salvioli, Alessandra</creator><creator>Novero, Mara</creator><creator>Marsoni, Milena</creator><creator>Testa, Lorenzo</creator><creator>Pinto, Maria Concetta</creator><creator>Amoresano, Angela</creator><creator>Ortolani, Francesca</creator><creator>Bracale, Marcella</creator><creator>Bonfante, Paola</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201607</creationdate><title>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</title><author>Vannini, Candida ; Carpentieri, Andrea ; Salvioli, Alessandra ; Novero, Mara ; Marsoni, Milena ; Testa, Lorenzo ; Pinto, Maria Concetta ; Amoresano, Angela ; Ortolani, Francesca ; Bracale, Marcella ; Bonfante, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5255-5827fec8ea558b78fa2aa18ae726d7d2185953eb839268c4ee14ca6fc2dfc2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>antioxidant status</topic><topic>Antioxidants - metabolism</topic><topic>arbuscular mycorrhizal fungi (AMF)</topic><topic>Bacterial Proteins - metabolism</topic><topic>Burkholderiaceae - physiology</topic><topic>Calcium Signaling</topic><topic>carbonylated proteins</topic><topic>endosymbiotic bacteria</topic><topic>Fungal Proteins - metabolism</topic><topic>Gigaspora margarita</topic><topic>Glomeromycota - physiology</topic><topic>Lipid Metabolism</topic><topic>Loteae - microbiology</topic><topic>Mycorrhizae - physiology</topic><topic>plant host</topic><topic>proteome profiling</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Symbiosis - physiology</topic><topic>Trifolium - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vannini, Candida</creatorcontrib><creatorcontrib>Carpentieri, Andrea</creatorcontrib><creatorcontrib>Salvioli, Alessandra</creatorcontrib><creatorcontrib>Novero, Mara</creatorcontrib><creatorcontrib>Marsoni, Milena</creatorcontrib><creatorcontrib>Testa, Lorenzo</creatorcontrib><creatorcontrib>Pinto, Maria Concetta</creatorcontrib><creatorcontrib>Amoresano, Angela</creatorcontrib><creatorcontrib>Ortolani, Francesca</creatorcontrib><creatorcontrib>Bracale, Marcella</creatorcontrib><creatorcontrib>Bonfante, Paola</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vannini, Candida</au><au>Carpentieri, Andrea</au><au>Salvioli, Alessandra</au><au>Novero, Mara</au><au>Marsoni, Milena</au><au>Testa, Lorenzo</au><au>Pinto, Maria Concetta</au><au>Amoresano, Angela</au><au>Ortolani, Francesca</au><au>Bracale, Marcella</au><au>Bonfante, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2016-07</date><risdate>2016</risdate><volume>211</volume><issue>1</issue><spage>265</spage><epage>275</epage><pages>265-275</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Arbuscular mycorrhizal fungi (AMF) are obligate plant biotrophs that may contain endobacteria in their cytoplasm. Genome sequencing of Candidatus Glomeribacter gigasporarum revealed a reduced genome and dependence on the fungal host.
RNA-seq analysis of the AMF Gigaspora margarita in the presence and absence of the endobacterium indicated that endobacteria have an important role in the fungal pre-symbiotic phase by enhancing fungal bioenergetic capacity. To improve the understanding of fungal–endobacterial interactions, iTRAQ (isobaric tags for relative and absolute quantification) quantitative proteomics was used to identify differentially expressed proteins in G. margarita germinating spores with endobacteria (B+), without endobacteria in the cured line (B−) and after application of the synthetic strigolactone GR24.
Proteomic, transcriptomic and biochemical data identified several fungal and bacterial proteins involved in interspecies interactions. Endobacteria influenced fungal growth, calcium signaling and metabolism. The greatest effects were on fungal primary metabolism and respiration, which was 50% higher in B+ than in B−. A shift towards pentose phosphate metabolism was detected in B−. Quantification of carbonylated proteins indicated that the B− line had higher oxidative stress levels, which were also observed in two host plants.
This study shows that endobacteria generate a complex interdomain network that affects AMF and fungal–plant interactions.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>26914272</pmid><doi>10.1111/nph.13895</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2016-07, Vol.211 (1), p.265-275 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808713266 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); JSTOR |
subjects | antioxidant status Antioxidants - metabolism arbuscular mycorrhizal fungi (AMF) Bacterial Proteins - metabolism Burkholderiaceae - physiology Calcium Signaling carbonylated proteins endosymbiotic bacteria Fungal Proteins - metabolism Gigaspora margarita Glomeromycota - physiology Lipid Metabolism Loteae - microbiology Mycorrhizae - physiology plant host proteome profiling Reactive Oxygen Species - metabolism Symbiosis - physiology Trifolium - microbiology |
title | An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T05%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interdomain%20network:%20the%20endobacterium%20of%20a%20mycorrhizal%20fungus%20promotes%20antioxidative%20responses%20in%20both%20fungal%20and%20plant%20hosts&rft.jtitle=The%20New%20phytologist&rft.au=Vannini,%20Candida&rft.date=2016-07&rft.volume=211&rft.issue=1&rft.spage=265&rft.epage=275&rft.pages=265-275&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.13895&rft_dat=%3Cjstor_proqu%3Enewphytologist.211.1.265%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792495944&rft_id=info:pmid/26914272&rft_jstor_id=newphytologist.211.1.265&rfr_iscdi=true |