Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells

The expression level of HLA class-I proteins is known to influence pathological outcomes: pathogens downregulate HLA to evade host immune responses, host inflammatory reactions upregulate HLA, and differences among people with regard to the steady-state expression levels of HLA associate with diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2015-04, Vol.194 (8), p.3594-3600
Hauptverfasser: Apps, Richard, Meng, Zhaojing, Del Prete, Gregory Q, Lifson, Jeffrey D, Zhou, Ming, Carrington, Mary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression level of HLA class-I proteins is known to influence pathological outcomes: pathogens downregulate HLA to evade host immune responses, host inflammatory reactions upregulate HLA, and differences among people with regard to the steady-state expression levels of HLA associate with disease susceptibility. Yet precise quantification of relative expression levels of the various HLA loci is difficult because of the tremendous polymorphism of HLA. We report relative expression levels of HLA-A, HLA-B, HLA-C, and HLA-E proteins for the specific haplotype A*02:01, B*44:02, C*05:01, which were characterized using two independent methods based on flow cytometry and mass spectrometry. PBLs from normal donors showed that HLA-A and HLA-B proteins are expressed at similar levels, which are 13-18 times higher than HLA-C by flow cytometry and 4-5 times higher than HLA-C by mass spectrometry; these differences may reflect variation in the conformation or location of proteins detected. HLA-E was detected at a level 25 times lower than that of HLA-C by mass spectrometry. Primary CD4(+) T cells infected with HIV in vitro were also studied because HIV downregulates selective HLA types. HLA-A and HLA-B were reduced on HIV-infected cells by a magnitude that varied between cells in an infected culture. Averaging all infected cells from an individual showed HLA-A to be 1-3 times higher and HLA-B to be 2-5 times higher than HLA-C by flow cytometry. These results quantify substantial differences in expression levels of the proteins from different HLA loci, which are very likely physiologically significant on both uninfected and HIV-infected cells.
ISSN:0022-1767
1550-6606
1550-6606
DOI:10.4049/jimmunol.1403234