Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data
Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studie...
Gespeichert in:
Veröffentlicht in: | Trends in plant science 2015-12, Vol.20 (12), p.822-833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 833 |
---|---|
container_issue | 12 |
container_start_page | 822 |
container_title | Trends in plant science |
container_volume | 20 |
creator | Li, Zitong Sillanpää, Mikko J. |
description | Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era.
High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits.
A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection.
To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis. |
doi_str_mv | 10.1016/j.tplants.2015.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808702456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138515002277</els_id><sourcerecordid>1751994180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCaAs2SSMnTh2VlC1vKRKFKmsLcexhas0KbFTqX-Poxa2sJpZnDt3dBC6xpBgwPndOvHbWjbeJQQwTYAngMkJGmPOeJyljJyGPc0hximnI3Th3BoAGOb5ORqRPOOkoHyMHub7Rm6sit77cMx66e1OR6tOWh8tWtW7aNrIeu-si1oTLYfGaPmpm3bIzKWXl-jMyNrpq-OcoI-nx9XsJV68Pb_OpotY0TTzMYVChn6TS1amGWGygDylUhsOpGSkJBJXkpiMMa4BV8YwDkyVijBqTIXzdIJuD3e3XfvVa-fFxjql6_CRbnsnMAfOgGT0HyijuCiykAgoPaCqa53rtBHbzm5ktxcYxOBZrMXRsxg8C-AieA65m2NFX2509Zv6ERuA-wOgg5Od1Z1wyupG6cp2WnlRtfaPim8ZepAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751994180</pqid></control><display><type>article</type><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Zitong ; Sillanpää, Mikko J.</creator><creatorcontrib>Li, Zitong ; Sillanpää, Mikko J.</creatorcontrib><description>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era.
High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits.
A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection.
To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2015.08.012</identifier><identifier>PMID: 26482958</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Chromosome Mapping - methods ; functional mapping ; Genomics - methods ; high-throughput phenotyping ; High-Throughput Screening Assays - methods ; Models, Genetic ; multiple-locus method ; Phenotype ; Plant Development - genetics ; plant growth and development ; Plants - genetics ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; timecourse</subject><ispartof>Trends in plant science, 2015-12, Vol.20 (12), p.822-833</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</citedby><cites>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138515002277$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26482958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zitong</creatorcontrib><creatorcontrib>Sillanpää, Mikko J.</creatorcontrib><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era.
High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits.
A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection.
To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</description><subject>Chromosome Mapping - methods</subject><subject>functional mapping</subject><subject>Genomics - methods</subject><subject>high-throughput phenotyping</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Models, Genetic</subject><subject>multiple-locus method</subject><subject>Phenotype</subject><subject>Plant Development - genetics</subject><subject>plant growth and development</subject><subject>Plants - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>timecourse</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EoqXwCaAs2SSMnTh2VlC1vKRKFKmsLcexhas0KbFTqX-Poxa2sJpZnDt3dBC6xpBgwPndOvHbWjbeJQQwTYAngMkJGmPOeJyljJyGPc0hximnI3Th3BoAGOb5ORqRPOOkoHyMHub7Rm6sit77cMx66e1OR6tOWh8tWtW7aNrIeu-si1oTLYfGaPmpm3bIzKWXl-jMyNrpq-OcoI-nx9XsJV68Pb_OpotY0TTzMYVChn6TS1amGWGygDylUhsOpGSkJBJXkpiMMa4BV8YwDkyVijBqTIXzdIJuD3e3XfvVa-fFxjql6_CRbnsnMAfOgGT0HyijuCiykAgoPaCqa53rtBHbzm5ktxcYxOBZrMXRsxg8C-AieA65m2NFX2509Zv6ERuA-wOgg5Od1Z1wyupG6cp2WnlRtfaPim8ZepAa</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Li, Zitong</creator><creator>Sillanpää, Mikko J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20151201</creationdate><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><author>Li, Zitong ; Sillanpää, Mikko J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chromosome Mapping - methods</topic><topic>functional mapping</topic><topic>Genomics - methods</topic><topic>high-throughput phenotyping</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Models, Genetic</topic><topic>multiple-locus method</topic><topic>Phenotype</topic><topic>Plant Development - genetics</topic><topic>plant growth and development</topic><topic>Plants - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>timecourse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zitong</creatorcontrib><creatorcontrib>Sillanpää, Mikko J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zitong</au><au>Sillanpää, Mikko J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>20</volume><issue>12</issue><spage>822</spage><epage>833</epage><pages>822-833</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era.
High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits.
A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection.
To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26482958</pmid><doi>10.1016/j.tplants.2015.08.012</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1360-1385 |
ispartof | Trends in plant science, 2015-12, Vol.20 (12), p.822-833 |
issn | 1360-1385 1878-4372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808702456 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Chromosome Mapping - methods functional mapping Genomics - methods high-throughput phenotyping High-Throughput Screening Assays - methods Models, Genetic multiple-locus method Phenotype Plant Development - genetics plant growth and development Plants - genetics Polymorphism, Single Nucleotide Quantitative Trait Loci timecourse |
title | Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Quantitative%20Trait%20Locus%20Analysis%20of%20Plant%20Phenomic%20Data&rft.jtitle=Trends%20in%20plant%20science&rft.au=Li,%20Zitong&rft.date=2015-12-01&rft.volume=20&rft.issue=12&rft.spage=822&rft.epage=833&rft.pages=822-833&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2015.08.012&rft_dat=%3Cproquest_cross%3E1751994180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751994180&rft_id=info:pmid/26482958&rft_els_id=S1360138515002277&rfr_iscdi=true |