Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data

Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in plant science 2015-12, Vol.20 (12), p.822-833
Hauptverfasser: Li, Zitong, Sillanpää, Mikko J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 833
container_issue 12
container_start_page 822
container_title Trends in plant science
container_volume 20
creator Li, Zitong
Sillanpää, Mikko J.
description Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.
doi_str_mv 10.1016/j.tplants.2015.08.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808702456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1360138515002277</els_id><sourcerecordid>1751994180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EoqXwCaAs2SSMnTh2VlC1vKRKFKmsLcexhas0KbFTqX-Poxa2sJpZnDt3dBC6xpBgwPndOvHbWjbeJQQwTYAngMkJGmPOeJyljJyGPc0hximnI3Th3BoAGOb5ORqRPOOkoHyMHub7Rm6sit77cMx66e1OR6tOWh8tWtW7aNrIeu-si1oTLYfGaPmpm3bIzKWXl-jMyNrpq-OcoI-nx9XsJV68Pb_OpotY0TTzMYVChn6TS1amGWGygDylUhsOpGSkJBJXkpiMMa4BV8YwDkyVijBqTIXzdIJuD3e3XfvVa-fFxjql6_CRbnsnMAfOgGT0HyijuCiykAgoPaCqa53rtBHbzm5ktxcYxOBZrMXRsxg8C-AieA65m2NFX2509Zv6ERuA-wOgg5Od1Z1wyupG6cp2WnlRtfaPim8ZepAa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751994180</pqid></control><display><type>article</type><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Zitong ; Sillanpää, Mikko J.</creator><creatorcontrib>Li, Zitong ; Sillanpää, Mikko J.</creatorcontrib><description>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</description><identifier>ISSN: 1360-1385</identifier><identifier>EISSN: 1878-4372</identifier><identifier>DOI: 10.1016/j.tplants.2015.08.012</identifier><identifier>PMID: 26482958</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Chromosome Mapping - methods ; functional mapping ; Genomics - methods ; high-throughput phenotyping ; High-Throughput Screening Assays - methods ; Models, Genetic ; multiple-locus method ; Phenotype ; Plant Development - genetics ; plant growth and development ; Plants - genetics ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; timecourse</subject><ispartof>Trends in plant science, 2015-12, Vol.20 (12), p.822-833</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</citedby><cites>FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1360138515002277$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26482958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zitong</creatorcontrib><creatorcontrib>Sillanpää, Mikko J.</creatorcontrib><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><title>Trends in plant science</title><addtitle>Trends Plant Sci</addtitle><description>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</description><subject>Chromosome Mapping - methods</subject><subject>functional mapping</subject><subject>Genomics - methods</subject><subject>high-throughput phenotyping</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Models, Genetic</subject><subject>multiple-locus method</subject><subject>Phenotype</subject><subject>Plant Development - genetics</subject><subject>plant growth and development</subject><subject>Plants - genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quantitative Trait Loci</subject><subject>timecourse</subject><issn>1360-1385</issn><issn>1878-4372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOwzAQRS0EoqXwCaAs2SSMnTh2VlC1vKRKFKmsLcexhas0KbFTqX-Poxa2sJpZnDt3dBC6xpBgwPndOvHbWjbeJQQwTYAngMkJGmPOeJyljJyGPc0hximnI3Th3BoAGOb5ORqRPOOkoHyMHub7Rm6sit77cMx66e1OR6tOWh8tWtW7aNrIeu-si1oTLYfGaPmpm3bIzKWXl-jMyNrpq-OcoI-nx9XsJV68Pb_OpotY0TTzMYVChn6TS1amGWGygDylUhsOpGSkJBJXkpiMMa4BV8YwDkyVijBqTIXzdIJuD3e3XfvVa-fFxjql6_CRbnsnMAfOgGT0HyijuCiykAgoPaCqa53rtBHbzm5ktxcYxOBZrMXRsxg8C-AieA65m2NFX2509Zv6ERuA-wOgg5Od1Z1wyupG6cp2WnlRtfaPim8ZepAa</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Li, Zitong</creator><creator>Sillanpää, Mikko J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20151201</creationdate><title>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</title><author>Li, Zitong ; Sillanpää, Mikko J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-509a000f6a7b3427a90635aef802b72b2a1da2f4778e01dff7807cbc275ffd163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chromosome Mapping - methods</topic><topic>functional mapping</topic><topic>Genomics - methods</topic><topic>high-throughput phenotyping</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Models, Genetic</topic><topic>multiple-locus method</topic><topic>Phenotype</topic><topic>Plant Development - genetics</topic><topic>plant growth and development</topic><topic>Plants - genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quantitative Trait Loci</topic><topic>timecourse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zitong</creatorcontrib><creatorcontrib>Sillanpää, Mikko J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in plant science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zitong</au><au>Sillanpää, Mikko J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data</atitle><jtitle>Trends in plant science</jtitle><addtitle>Trends Plant Sci</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>20</volume><issue>12</issue><spage>822</spage><epage>833</epage><pages>822-833</pages><issn>1360-1385</issn><eissn>1878-4372</eissn><abstract>Advanced platforms have recently become available for automatic and systematic quantification of plant growth and development. These new techniques can efficiently produce multiple measurements of phenotypes over time, and introduce time as an extra dimension to quantitative trait locus (QTL) studies. Functional mapping utilizes a class of statistical models for identifying QTLs associated with the growth characteristics of interest. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. We review the current development of computationally efficient functional mapping methods which provide invaluable tools for analyzing large-scale timecourse data that are readily available in our post-genome era. High-throughput imaging techniques are capable of measuring time-series of plant phenotypes, which may potentially facilitate the QTL analysis of developmental and growth related traits. A major benefit of functional mapping is that it integrates information over multiple timepoints, and therefore could increase the statistical power for QTL detection. To handle high-dimensional genotyping and phenotyping data, computational efficiency is the focus of the novel statistical methods for dynamic QTL analysis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26482958</pmid><doi>10.1016/j.tplants.2015.08.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1360-1385
ispartof Trends in plant science, 2015-12, Vol.20 (12), p.822-833
issn 1360-1385
1878-4372
language eng
recordid cdi_proquest_miscellaneous_1808702456
source MEDLINE; Elsevier ScienceDirect Journals
subjects Chromosome Mapping - methods
functional mapping
Genomics - methods
high-throughput phenotyping
High-Throughput Screening Assays - methods
Models, Genetic
multiple-locus method
Phenotype
Plant Development - genetics
plant growth and development
Plants - genetics
Polymorphism, Single Nucleotide
Quantitative Trait Loci
timecourse
title Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A00%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Quantitative%20Trait%20Locus%20Analysis%20of%20Plant%20Phenomic%20Data&rft.jtitle=Trends%20in%20plant%20science&rft.au=Li,%20Zitong&rft.date=2015-12-01&rft.volume=20&rft.issue=12&rft.spage=822&rft.epage=833&rft.pages=822-833&rft.issn=1360-1385&rft.eissn=1878-4372&rft_id=info:doi/10.1016/j.tplants.2015.08.012&rft_dat=%3Cproquest_cross%3E1751994180%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1751994180&rft_id=info:pmid/26482958&rft_els_id=S1360138515002277&rfr_iscdi=true