Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray

The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuropharmacology 2016-06, Vol.105, p.577-586
Hauptverfasser: Lee, Hsin-Jung, Chang, Lu-Yang, Ho, Yu-Cheng, Teng, Shu-Fang, Hwang, Ling-Ling, Mackie, Ken, Chiou, Lih-Chu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue
container_start_page 577
container_title Neuropharmacology
container_volume 105
creator Lee, Hsin-Jung
Chang, Lu-Yang
Ho, Yu-Cheng
Teng, Shu-Fang
Hwang, Ling-Ling
Mackie, Ken
Chiou, Lih-Chu
description The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. •Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.
doi_str_mv 10.1016/j.neuropharm.2016.02.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808699698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390816300545</els_id><sourcerecordid>1790454854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EotPCKyAv2SQ9viSxl3TEpVIlFsDacpyTqUeJE2yn0LfHoymw7MKyZP03-SOEMqgZsPb6WAfc4rLe2zjXvLzUwGtg6gXZMdWJqoNWviQ7AK4qoUFdkMuUjgAgFVOvyQVvNXQK9I78-pYjpkR9GDaHidpgpwMmb-lDOUvE3z5QRiM6XPMSKx989jbjQDEMi7Mh2N6HxQ_X-xtGkz8Uvw-HkkfzPdJ52RLSFaO3PzcsFdlO9BDt4xvyarRTwrdP9xX58enj9_2X6u7r59v9h7vKyabLlUamYJQWRtey02TR90o64EKidHJsZOf6oUEhRjfKxo6SAx-skEwwrpkWV-T9OXeNS1mQspl9cjhNNmDZZkq8arVutXpe2mmQjVSNLFJ1lrq4pBRxNGv0s42PhoE5ETJH85-QOREywE0hVKzvnlq2fsbhn_EvkiK4OQuwfMuDx2iS8xgcDr5QyGZY_PMtfwAU5qi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454854</pqid></control><display><type>article</type><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</creator><creatorcontrib>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</creatorcontrib><description>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. •Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2016.02.018</identifier><identifier>PMID: 26907809</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Analgesics, Opioid - pharmacology ; Animals ; Benzoxazines - pharmacology ; Benzoxazoles - pharmacology ; Cannabinoid ; Corticosterone - blood ; Hypothalamus - drug effects ; Hypothalamus - metabolism ; Hypothalamus - pathology ; Isoquinolines - pharmacology ; Male ; Mice, Inbred C57BL ; Morpholines - pharmacology ; Naloxone - pharmacology ; Naphthalenes - pharmacology ; Naphthyridines ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Nociceptive Pain - drug therapy ; Nociceptive Pain - metabolism ; Nociceptive Pain - pathology ; Orexin ; Orexin Receptors - agonists ; Orexin Receptors - metabolism ; OX1 and OX2 receptors ; Pain ; Pain Perception - drug effects ; Pain Perception - physiology ; Periaqueductal gray ; Periaqueductal Gray - drug effects ; Periaqueductal Gray - metabolism ; Periaqueductal Gray - pathology ; Proto-Oncogene Proteins c-fos - metabolism ; Pyridines - pharmacology ; Receptor, Cannabinoid, CB1 - agonists ; Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors ; Receptor, Cannabinoid, CB1 - metabolism ; Signal Transduction - drug effects ; Stress, Psychological - drug therapy ; Stress, Psychological - metabolism ; Stress, Psychological - pathology ; Stress-induced analgesia ; Urea - analogs &amp; derivatives ; Urea - pharmacology</subject><ispartof>Neuropharmacology, 2016-06, Vol.105, p.577-586</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</citedby><cites>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</cites><orcidid>0000-0001-5356-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropharm.2016.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26907809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hsin-Jung</creatorcontrib><creatorcontrib>Chang, Lu-Yang</creatorcontrib><creatorcontrib>Ho, Yu-Cheng</creatorcontrib><creatorcontrib>Teng, Shu-Fang</creatorcontrib><creatorcontrib>Hwang, Ling-Ling</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Chiou, Lih-Chu</creatorcontrib><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. •Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</description><subject>Analgesics, Opioid - pharmacology</subject><subject>Animals</subject><subject>Benzoxazines - pharmacology</subject><subject>Benzoxazoles - pharmacology</subject><subject>Cannabinoid</subject><subject>Corticosterone - blood</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - metabolism</subject><subject>Hypothalamus - pathology</subject><subject>Isoquinolines - pharmacology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Morpholines - pharmacology</subject><subject>Naloxone - pharmacology</subject><subject>Naphthalenes - pharmacology</subject><subject>Naphthyridines</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Nociceptive Pain - drug therapy</subject><subject>Nociceptive Pain - metabolism</subject><subject>Nociceptive Pain - pathology</subject><subject>Orexin</subject><subject>Orexin Receptors - agonists</subject><subject>Orexin Receptors - metabolism</subject><subject>OX1 and OX2 receptors</subject><subject>Pain</subject><subject>Pain Perception - drug effects</subject><subject>Pain Perception - physiology</subject><subject>Periaqueductal gray</subject><subject>Periaqueductal Gray - drug effects</subject><subject>Periaqueductal Gray - metabolism</subject><subject>Periaqueductal Gray - pathology</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Receptor, Cannabinoid, CB1 - agonists</subject><subject>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Stress, Psychological - drug therapy</subject><subject>Stress, Psychological - metabolism</subject><subject>Stress, Psychological - pathology</subject><subject>Stress-induced analgesia</subject><subject>Urea - analogs &amp; derivatives</subject><subject>Urea - pharmacology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EotPCKyAv2SQ9viSxl3TEpVIlFsDacpyTqUeJE2yn0LfHoymw7MKyZP03-SOEMqgZsPb6WAfc4rLe2zjXvLzUwGtg6gXZMdWJqoNWviQ7AK4qoUFdkMuUjgAgFVOvyQVvNXQK9I78-pYjpkR9GDaHidpgpwMmb-lDOUvE3z5QRiM6XPMSKx989jbjQDEMi7Mh2N6HxQ_X-xtGkz8Uvw-HkkfzPdJ52RLSFaO3PzcsFdlO9BDt4xvyarRTwrdP9xX58enj9_2X6u7r59v9h7vKyabLlUamYJQWRtey02TR90o64EKidHJsZOf6oUEhRjfKxo6SAx-skEwwrpkWV-T9OXeNS1mQspl9cjhNNmDZZkq8arVutXpe2mmQjVSNLFJ1lrq4pBRxNGv0s42PhoE5ETJH85-QOREywE0hVKzvnlq2fsbhn_EvkiK4OQuwfMuDx2iS8xgcDr5QyGZY_PMtfwAU5qi4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Lee, Hsin-Jung</creator><creator>Chang, Lu-Yang</creator><creator>Ho, Yu-Cheng</creator><creator>Teng, Shu-Fang</creator><creator>Hwang, Ling-Ling</creator><creator>Mackie, Ken</creator><creator>Chiou, Lih-Chu</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0001-5356-940X</orcidid></search><sort><creationdate>201606</creationdate><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><author>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analgesics, Opioid - pharmacology</topic><topic>Animals</topic><topic>Benzoxazines - pharmacology</topic><topic>Benzoxazoles - pharmacology</topic><topic>Cannabinoid</topic><topic>Corticosterone - blood</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - metabolism</topic><topic>Hypothalamus - pathology</topic><topic>Isoquinolines - pharmacology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Morpholines - pharmacology</topic><topic>Naloxone - pharmacology</topic><topic>Naphthalenes - pharmacology</topic><topic>Naphthyridines</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Nociceptive Pain - drug therapy</topic><topic>Nociceptive Pain - metabolism</topic><topic>Nociceptive Pain - pathology</topic><topic>Orexin</topic><topic>Orexin Receptors - agonists</topic><topic>Orexin Receptors - metabolism</topic><topic>OX1 and OX2 receptors</topic><topic>Pain</topic><topic>Pain Perception - drug effects</topic><topic>Pain Perception - physiology</topic><topic>Periaqueductal gray</topic><topic>Periaqueductal Gray - drug effects</topic><topic>Periaqueductal Gray - metabolism</topic><topic>Periaqueductal Gray - pathology</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Receptor, Cannabinoid, CB1 - agonists</topic><topic>Receptor, Cannabinoid, CB1 - antagonists &amp; inhibitors</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Stress, Psychological - drug therapy</topic><topic>Stress, Psychological - metabolism</topic><topic>Stress, Psychological - pathology</topic><topic>Stress-induced analgesia</topic><topic>Urea - analogs &amp; derivatives</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hsin-Jung</creatorcontrib><creatorcontrib>Chang, Lu-Yang</creatorcontrib><creatorcontrib>Ho, Yu-Cheng</creatorcontrib><creatorcontrib>Teng, Shu-Fang</creatorcontrib><creatorcontrib>Hwang, Ling-Ling</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Chiou, Lih-Chu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hsin-Jung</au><au>Chang, Lu-Yang</au><au>Ho, Yu-Cheng</au><au>Teng, Shu-Fang</au><au>Hwang, Ling-Ling</au><au>Mackie, Ken</au><au>Chiou, Lih-Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2016-06</date><risdate>2016</risdate><volume>105</volume><spage>577</spage><epage>586</epage><pages>577-586</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. •Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26907809</pmid><doi>10.1016/j.neuropharm.2016.02.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5356-940X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3908
ispartof Neuropharmacology, 2016-06, Vol.105, p.577-586
issn 0028-3908
1873-7064
language eng
recordid cdi_proquest_miscellaneous_1808699698
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Analgesics, Opioid - pharmacology
Animals
Benzoxazines - pharmacology
Benzoxazoles - pharmacology
Cannabinoid
Corticosterone - blood
Hypothalamus - drug effects
Hypothalamus - metabolism
Hypothalamus - pathology
Isoquinolines - pharmacology
Male
Mice, Inbred C57BL
Morpholines - pharmacology
Naloxone - pharmacology
Naphthalenes - pharmacology
Naphthyridines
Neurons - drug effects
Neurons - metabolism
Neurons - pathology
Nociceptive Pain - drug therapy
Nociceptive Pain - metabolism
Nociceptive Pain - pathology
Orexin
Orexin Receptors - agonists
Orexin Receptors - metabolism
OX1 and OX2 receptors
Pain
Pain Perception - drug effects
Pain Perception - physiology
Periaqueductal gray
Periaqueductal Gray - drug effects
Periaqueductal Gray - metabolism
Periaqueductal Gray - pathology
Proto-Oncogene Proteins c-fos - metabolism
Pyridines - pharmacology
Receptor, Cannabinoid, CB1 - agonists
Receptor, Cannabinoid, CB1 - antagonists & inhibitors
Receptor, Cannabinoid, CB1 - metabolism
Signal Transduction - drug effects
Stress, Psychological - drug therapy
Stress, Psychological - metabolism
Stress, Psychological - pathology
Stress-induced analgesia
Urea - analogs & derivatives
Urea - pharmacology
title Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20induces%20analgesia%20via%20orexin%201%20receptor-initiated%20endocannabinoid/CB1%20signaling%20in%20the%20mouse%20periaqueductal%20gray&rft.jtitle=Neuropharmacology&rft.au=Lee,%20Hsin-Jung&rft.date=2016-06&rft.volume=105&rft.spage=577&rft.epage=586&rft.pages=577-586&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2016.02.018&rft_dat=%3Cproquest_cross%3E1790454854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790454854&rft_id=info:pmid/26907809&rft_els_id=S0028390816300545&rfr_iscdi=true