Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray
The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediat...
Gespeichert in:
Veröffentlicht in: | Neuropharmacology 2016-06, Vol.105, p.577-586 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | |
container_start_page | 577 |
container_title | Neuropharmacology |
container_volume | 105 |
creator | Lee, Hsin-Jung Chang, Lu-Yang Ho, Yu-Cheng Teng, Shu-Fang Hwang, Ling-Ling Mackie, Ken Chiou, Lih-Chu |
description | The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent.
•Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia. |
doi_str_mv | 10.1016/j.neuropharm.2016.02.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808699698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0028390816300545</els_id><sourcerecordid>1790454854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EotPCKyAv2SQ9viSxl3TEpVIlFsDacpyTqUeJE2yn0LfHoymw7MKyZP03-SOEMqgZsPb6WAfc4rLe2zjXvLzUwGtg6gXZMdWJqoNWviQ7AK4qoUFdkMuUjgAgFVOvyQVvNXQK9I78-pYjpkR9GDaHidpgpwMmb-lDOUvE3z5QRiM6XPMSKx989jbjQDEMi7Mh2N6HxQ_X-xtGkz8Uvw-HkkfzPdJ52RLSFaO3PzcsFdlO9BDt4xvyarRTwrdP9xX58enj9_2X6u7r59v9h7vKyabLlUamYJQWRtey02TR90o64EKidHJsZOf6oUEhRjfKxo6SAx-skEwwrpkWV-T9OXeNS1mQspl9cjhNNmDZZkq8arVutXpe2mmQjVSNLFJ1lrq4pBRxNGv0s42PhoE5ETJH85-QOREywE0hVKzvnlq2fsbhn_EvkiK4OQuwfMuDx2iS8xgcDr5QyGZY_PMtfwAU5qi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790454854</pqid></control><display><type>article</type><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</creator><creatorcontrib>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</creatorcontrib><description>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent.
•Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</description><identifier>ISSN: 0028-3908</identifier><identifier>EISSN: 1873-7064</identifier><identifier>DOI: 10.1016/j.neuropharm.2016.02.018</identifier><identifier>PMID: 26907809</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Analgesics, Opioid - pharmacology ; Animals ; Benzoxazines - pharmacology ; Benzoxazoles - pharmacology ; Cannabinoid ; Corticosterone - blood ; Hypothalamus - drug effects ; Hypothalamus - metabolism ; Hypothalamus - pathology ; Isoquinolines - pharmacology ; Male ; Mice, Inbred C57BL ; Morpholines - pharmacology ; Naloxone - pharmacology ; Naphthalenes - pharmacology ; Naphthyridines ; Neurons - drug effects ; Neurons - metabolism ; Neurons - pathology ; Nociceptive Pain - drug therapy ; Nociceptive Pain - metabolism ; Nociceptive Pain - pathology ; Orexin ; Orexin Receptors - agonists ; Orexin Receptors - metabolism ; OX1 and OX2 receptors ; Pain ; Pain Perception - drug effects ; Pain Perception - physiology ; Periaqueductal gray ; Periaqueductal Gray - drug effects ; Periaqueductal Gray - metabolism ; Periaqueductal Gray - pathology ; Proto-Oncogene Proteins c-fos - metabolism ; Pyridines - pharmacology ; Receptor, Cannabinoid, CB1 - agonists ; Receptor, Cannabinoid, CB1 - antagonists & inhibitors ; Receptor, Cannabinoid, CB1 - metabolism ; Signal Transduction - drug effects ; Stress, Psychological - drug therapy ; Stress, Psychological - metabolism ; Stress, Psychological - pathology ; Stress-induced analgesia ; Urea - analogs & derivatives ; Urea - pharmacology</subject><ispartof>Neuropharmacology, 2016-06, Vol.105, p.577-586</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</citedby><cites>FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</cites><orcidid>0000-0001-5356-940X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuropharm.2016.02.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26907809$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Hsin-Jung</creatorcontrib><creatorcontrib>Chang, Lu-Yang</creatorcontrib><creatorcontrib>Ho, Yu-Cheng</creatorcontrib><creatorcontrib>Teng, Shu-Fang</creatorcontrib><creatorcontrib>Hwang, Ling-Ling</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Chiou, Lih-Chu</creatorcontrib><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><title>Neuropharmacology</title><addtitle>Neuropharmacology</addtitle><description>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent.
•Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</description><subject>Analgesics, Opioid - pharmacology</subject><subject>Animals</subject><subject>Benzoxazines - pharmacology</subject><subject>Benzoxazoles - pharmacology</subject><subject>Cannabinoid</subject><subject>Corticosterone - blood</subject><subject>Hypothalamus - drug effects</subject><subject>Hypothalamus - metabolism</subject><subject>Hypothalamus - pathology</subject><subject>Isoquinolines - pharmacology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Morpholines - pharmacology</subject><subject>Naloxone - pharmacology</subject><subject>Naphthalenes - pharmacology</subject><subject>Naphthyridines</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurons - pathology</subject><subject>Nociceptive Pain - drug therapy</subject><subject>Nociceptive Pain - metabolism</subject><subject>Nociceptive Pain - pathology</subject><subject>Orexin</subject><subject>Orexin Receptors - agonists</subject><subject>Orexin Receptors - metabolism</subject><subject>OX1 and OX2 receptors</subject><subject>Pain</subject><subject>Pain Perception - drug effects</subject><subject>Pain Perception - physiology</subject><subject>Periaqueductal gray</subject><subject>Periaqueductal Gray - drug effects</subject><subject>Periaqueductal Gray - metabolism</subject><subject>Periaqueductal Gray - pathology</subject><subject>Proto-Oncogene Proteins c-fos - metabolism</subject><subject>Pyridines - pharmacology</subject><subject>Receptor, Cannabinoid, CB1 - agonists</subject><subject>Receptor, Cannabinoid, CB1 - antagonists & inhibitors</subject><subject>Receptor, Cannabinoid, CB1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Stress, Psychological - drug therapy</subject><subject>Stress, Psychological - metabolism</subject><subject>Stress, Psychological - pathology</subject><subject>Stress-induced analgesia</subject><subject>Urea - analogs & derivatives</subject><subject>Urea - pharmacology</subject><issn>0028-3908</issn><issn>1873-7064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1DAUhi0EotPCKyAv2SQ9viSxl3TEpVIlFsDacpyTqUeJE2yn0LfHoymw7MKyZP03-SOEMqgZsPb6WAfc4rLe2zjXvLzUwGtg6gXZMdWJqoNWviQ7AK4qoUFdkMuUjgAgFVOvyQVvNXQK9I78-pYjpkR9GDaHidpgpwMmb-lDOUvE3z5QRiM6XPMSKx989jbjQDEMi7Mh2N6HxQ_X-xtGkz8Uvw-HkkfzPdJ52RLSFaO3PzcsFdlO9BDt4xvyarRTwrdP9xX58enj9_2X6u7r59v9h7vKyabLlUamYJQWRtey02TR90o64EKidHJsZOf6oUEhRjfKxo6SAx-skEwwrpkWV-T9OXeNS1mQspl9cjhNNmDZZkq8arVutXpe2mmQjVSNLFJ1lrq4pBRxNGv0s42PhoE5ETJH85-QOREywE0hVKzvnlq2fsbhn_EvkiK4OQuwfMuDx2iS8xgcDr5QyGZY_PMtfwAU5qi4</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Lee, Hsin-Jung</creator><creator>Chang, Lu-Yang</creator><creator>Ho, Yu-Cheng</creator><creator>Teng, Shu-Fang</creator><creator>Hwang, Ling-Ling</creator><creator>Mackie, Ken</creator><creator>Chiou, Lih-Chu</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><orcidid>https://orcid.org/0000-0001-5356-940X</orcidid></search><sort><creationdate>201606</creationdate><title>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</title><author>Lee, Hsin-Jung ; Chang, Lu-Yang ; Ho, Yu-Cheng ; Teng, Shu-Fang ; Hwang, Ling-Ling ; Mackie, Ken ; Chiou, Lih-Chu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-9e180f4a0fc6107803bb84c0234e4c4f547cbd5e33fcf45af4202da3413129193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analgesics, Opioid - pharmacology</topic><topic>Animals</topic><topic>Benzoxazines - pharmacology</topic><topic>Benzoxazoles - pharmacology</topic><topic>Cannabinoid</topic><topic>Corticosterone - blood</topic><topic>Hypothalamus - drug effects</topic><topic>Hypothalamus - metabolism</topic><topic>Hypothalamus - pathology</topic><topic>Isoquinolines - pharmacology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Morpholines - pharmacology</topic><topic>Naloxone - pharmacology</topic><topic>Naphthalenes - pharmacology</topic><topic>Naphthyridines</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurons - pathology</topic><topic>Nociceptive Pain - drug therapy</topic><topic>Nociceptive Pain - metabolism</topic><topic>Nociceptive Pain - pathology</topic><topic>Orexin</topic><topic>Orexin Receptors - agonists</topic><topic>Orexin Receptors - metabolism</topic><topic>OX1 and OX2 receptors</topic><topic>Pain</topic><topic>Pain Perception - drug effects</topic><topic>Pain Perception - physiology</topic><topic>Periaqueductal gray</topic><topic>Periaqueductal Gray - drug effects</topic><topic>Periaqueductal Gray - metabolism</topic><topic>Periaqueductal Gray - pathology</topic><topic>Proto-Oncogene Proteins c-fos - metabolism</topic><topic>Pyridines - pharmacology</topic><topic>Receptor, Cannabinoid, CB1 - agonists</topic><topic>Receptor, Cannabinoid, CB1 - antagonists & inhibitors</topic><topic>Receptor, Cannabinoid, CB1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Stress, Psychological - drug therapy</topic><topic>Stress, Psychological - metabolism</topic><topic>Stress, Psychological - pathology</topic><topic>Stress-induced analgesia</topic><topic>Urea - analogs & derivatives</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hsin-Jung</creatorcontrib><creatorcontrib>Chang, Lu-Yang</creatorcontrib><creatorcontrib>Ho, Yu-Cheng</creatorcontrib><creatorcontrib>Teng, Shu-Fang</creatorcontrib><creatorcontrib>Hwang, Ling-Ling</creatorcontrib><creatorcontrib>Mackie, Ken</creatorcontrib><creatorcontrib>Chiou, Lih-Chu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hsin-Jung</au><au>Chang, Lu-Yang</au><au>Ho, Yu-Cheng</au><au>Teng, Shu-Fang</au><au>Hwang, Ling-Ling</au><au>Mackie, Ken</au><au>Chiou, Lih-Chu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray</atitle><jtitle>Neuropharmacology</jtitle><addtitle>Neuropharmacology</addtitle><date>2016-06</date><risdate>2016</risdate><volume>105</volume><spage>577</spage><epage>586</epage><pages>577-586</pages><issn>0028-3908</issn><eissn>1873-7064</eissn><abstract>The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala11, D-Leu15]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent.
•Orexins induce analgesia via endocannabinoids in the periaqueductal gray.•Restraint stress activates hypothalamic orexin neurons, leading to analgesia.•Stress-induced analgesia via OX1 and CB1 receptors in the periaqueductal gray.•Activating OX2 receptors in the periaqueductal gray also induces analgesia.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26907809</pmid><doi>10.1016/j.neuropharm.2016.02.018</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5356-940X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3908 |
ispartof | Neuropharmacology, 2016-06, Vol.105, p.577-586 |
issn | 0028-3908 1873-7064 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808699698 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Analgesics, Opioid - pharmacology Animals Benzoxazines - pharmacology Benzoxazoles - pharmacology Cannabinoid Corticosterone - blood Hypothalamus - drug effects Hypothalamus - metabolism Hypothalamus - pathology Isoquinolines - pharmacology Male Mice, Inbred C57BL Morpholines - pharmacology Naloxone - pharmacology Naphthalenes - pharmacology Naphthyridines Neurons - drug effects Neurons - metabolism Neurons - pathology Nociceptive Pain - drug therapy Nociceptive Pain - metabolism Nociceptive Pain - pathology Orexin Orexin Receptors - agonists Orexin Receptors - metabolism OX1 and OX2 receptors Pain Pain Perception - drug effects Pain Perception - physiology Periaqueductal gray Periaqueductal Gray - drug effects Periaqueductal Gray - metabolism Periaqueductal Gray - pathology Proto-Oncogene Proteins c-fos - metabolism Pyridines - pharmacology Receptor, Cannabinoid, CB1 - agonists Receptor, Cannabinoid, CB1 - antagonists & inhibitors Receptor, Cannabinoid, CB1 - metabolism Signal Transduction - drug effects Stress, Psychological - drug therapy Stress, Psychological - metabolism Stress, Psychological - pathology Stress-induced analgesia Urea - analogs & derivatives Urea - pharmacology |
title | Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A36%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20induces%20analgesia%20via%20orexin%201%20receptor-initiated%20endocannabinoid/CB1%20signaling%20in%20the%20mouse%20periaqueductal%20gray&rft.jtitle=Neuropharmacology&rft.au=Lee,%20Hsin-Jung&rft.date=2016-06&rft.volume=105&rft.spage=577&rft.epage=586&rft.pages=577-586&rft.issn=0028-3908&rft.eissn=1873-7064&rft_id=info:doi/10.1016/j.neuropharm.2016.02.018&rft_dat=%3Cproquest_cross%3E1790454854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790454854&rft_id=info:pmid/26907809&rft_els_id=S0028390816300545&rfr_iscdi=true |