Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod
Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with t...
Gespeichert in:
Veröffentlicht in: | Molecular ecology 2016-05, Vol.25 (10), p.2130-2143 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2143 |
---|---|
container_issue | 10 |
container_start_page | 2130 |
container_title | Molecular ecology |
container_volume | 25 |
creator | Kirubakaran, Tina Graceline Grove, Harald Kent, Matthew P. Sandve, Simen R. Baranski, Matthew Nome, Torfinn De Rosa, Maria Cristina Righino, Benedetta Johansen, Torild Otterå, Håkon Sonesson, Anna Lien, Sigbjørn Andersen, Øivind |
description | Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and genetic differences between NEAC and NCC are maintained. In this study, we resolve the enigma by revealing the mechanisms underlying these differences. Extended linkage disequilibrium (LD) and population divergence were demonstrated in a 17.4‐Mb region on linkage group 1 (LG1) based on genotypes of 494 SNPs from 192 parents of farmed families of NEAC, NCC or NEACxNCC crosses. Linkage analyses revealed two adjacent inversions within this region that repress meiotic recombination in NEACxNCC crosses. We identified a NEAC‐specific haplotype consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregating under Hardy–Weinberg equilibrium in eight NCC stocks. Comparative genomic analyses determine the NEAC configuration of the inversions to be the derived state and date it to ~1.6–2.0 Mya. The haplotype block harbours 763 genes, including candidates regulating swim bladder pressure, haem synthesis and skeletal muscle organization conferring adaptation to long‐distance migrations and vertical movements down to large depths. Our results suggest that the migratory ecotype experiences strong directional selection for the two adjacent inversions on LG1. Despite interbreeding between NEAC and NCC, the inversions are maintaining genetic differentiation, and we hypothesize the co‐occurrence of multiple adaptive alleles forming a ‘supergene’ in the NEAC population. |
doi_str_mv | 10.1111/mec.13592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808687581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1791333193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-bd8e66f788b33a803098a425a020b011dc871e35cd7979a77dd35b8437aee9a23</originalsourceid><addsrcrecordid>eNqF0k9vFCEUAPCJ0dht9eAXUBIvepiWP8MAx2at1WRbD26jN8LAmw3rzrAF1u1-e9lu24OJkYQQwu-9PHhU1RuCT0kZZwPYU8K4os-qCWEtr6lqfj6vJli1tCZYsqPqOKUlxoRRzl9WR7RVlHHcTKo43wZk3NJYGDPy42-IyYcxocH4MZeJFjCGwVvkfN9DLMqbXATqIG8BRjT4RTQ5xB0yo0Mp35-asgUb8m4NCYUeneeVKZEW2eBeVS96s0rw-mE9qW4-X8ynX-rZt8uv0_NZbZtG0rpzEtq2F1J2jBmJGVbSNJQbTHGHCXFWCgKMWyeUUEYI5xjvZMOEAVCGspPqwyHvOobbDaSsB58srEolEDZJE4llKwWX5P9UKMIYI4oV-v4vugybOJaL7BXmpFTQFvXxoGwMKUXo9Tr6obyKJljve6ZLz_R9z4p9-5Bx0w3gnuRjkwo4O4CtX8Hu35n01cX0MWV9iPApw91ThIm_dCuY4PrH9aWezvH11eyT1Hv_7uB7E7RZRJ_0zXeKSVu-DKdKYPYHI1S45g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790518436</pqid></control><display><type>article</type><title>Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kirubakaran, Tina Graceline ; Grove, Harald ; Kent, Matthew P. ; Sandve, Simen R. ; Baranski, Matthew ; Nome, Torfinn ; De Rosa, Maria Cristina ; Righino, Benedetta ; Johansen, Torild ; Otterå, Håkon ; Sonesson, Anna ; Lien, Sigbjørn ; Andersen, Øivind</creator><creatorcontrib>Kirubakaran, Tina Graceline ; Grove, Harald ; Kent, Matthew P. ; Sandve, Simen R. ; Baranski, Matthew ; Nome, Torfinn ; De Rosa, Maria Cristina ; Righino, Benedetta ; Johansen, Torild ; Otterå, Håkon ; Sonesson, Anna ; Lien, Sigbjørn ; Andersen, Øivind</creatorcontrib><description>Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and genetic differences between NEAC and NCC are maintained. In this study, we resolve the enigma by revealing the mechanisms underlying these differences. Extended linkage disequilibrium (LD) and population divergence were demonstrated in a 17.4‐Mb region on linkage group 1 (LG1) based on genotypes of 494 SNPs from 192 parents of farmed families of NEAC, NCC or NEACxNCC crosses. Linkage analyses revealed two adjacent inversions within this region that repress meiotic recombination in NEACxNCC crosses. We identified a NEAC‐specific haplotype consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregating under Hardy–Weinberg equilibrium in eight NCC stocks. Comparative genomic analyses determine the NEAC configuration of the inversions to be the derived state and date it to ~1.6–2.0 Mya. The haplotype block harbours 763 genes, including candidates regulating swim bladder pressure, haem synthesis and skeletal muscle organization conferring adaptation to long‐distance migrations and vertical movements down to large depths. Our results suggest that the migratory ecotype experiences strong directional selection for the two adjacent inversions on LG1. Despite interbreeding between NEAC and NCC, the inversions are maintaining genetic differentiation, and we hypothesize the co‐occurrence of multiple adaptive alleles forming a ‘supergene’ in the NEAC population.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13592</identifier><identifier>PMID: 26923504</identifier><language>eng</language><publisher>England: John Wiley & Sons, Ltd</publisher><subject>Animal Migration ; Animals ; chromosomal inversion ; Chromosome Inversion ; Cod ; Ecotype ; Gadus morhua ; Gadus morhua - genetics ; gene flow ; Genetic Linkage ; Genetics, Population ; Genomics ; Genotype ; Haplotypes ; Linkage Disequilibrium ; local adaptation ; Norway ; Polymorphism, Single Nucleotide ; recombination ; Selection, Genetic ; Sequence Analysis, DNA ; supergene ; swim bladder</subject><ispartof>Molecular ecology, 2016-05, Vol.25 (10), p.2130-2143</ispartof><rights>2016 John Wiley & Sons Ltd</rights><rights>2016 John Wiley & Sons Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-bd8e66f788b33a803098a425a020b011dc871e35cd7979a77dd35b8437aee9a23</citedby><cites>FETCH-LOGICAL-c4482-bd8e66f788b33a803098a425a020b011dc871e35cd7979a77dd35b8437aee9a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmec.13592$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmec.13592$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26923504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirubakaran, Tina Graceline</creatorcontrib><creatorcontrib>Grove, Harald</creatorcontrib><creatorcontrib>Kent, Matthew P.</creatorcontrib><creatorcontrib>Sandve, Simen R.</creatorcontrib><creatorcontrib>Baranski, Matthew</creatorcontrib><creatorcontrib>Nome, Torfinn</creatorcontrib><creatorcontrib>De Rosa, Maria Cristina</creatorcontrib><creatorcontrib>Righino, Benedetta</creatorcontrib><creatorcontrib>Johansen, Torild</creatorcontrib><creatorcontrib>Otterå, Håkon</creatorcontrib><creatorcontrib>Sonesson, Anna</creatorcontrib><creatorcontrib>Lien, Sigbjørn</creatorcontrib><creatorcontrib>Andersen, Øivind</creatorcontrib><title>Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and genetic differences between NEAC and NCC are maintained. In this study, we resolve the enigma by revealing the mechanisms underlying these differences. Extended linkage disequilibrium (LD) and population divergence were demonstrated in a 17.4‐Mb region on linkage group 1 (LG1) based on genotypes of 494 SNPs from 192 parents of farmed families of NEAC, NCC or NEACxNCC crosses. Linkage analyses revealed two adjacent inversions within this region that repress meiotic recombination in NEACxNCC crosses. We identified a NEAC‐specific haplotype consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregating under Hardy–Weinberg equilibrium in eight NCC stocks. Comparative genomic analyses determine the NEAC configuration of the inversions to be the derived state and date it to ~1.6–2.0 Mya. The haplotype block harbours 763 genes, including candidates regulating swim bladder pressure, haem synthesis and skeletal muscle organization conferring adaptation to long‐distance migrations and vertical movements down to large depths. Our results suggest that the migratory ecotype experiences strong directional selection for the two adjacent inversions on LG1. Despite interbreeding between NEAC and NCC, the inversions are maintaining genetic differentiation, and we hypothesize the co‐occurrence of multiple adaptive alleles forming a ‘supergene’ in the NEAC population.</description><subject>Animal Migration</subject><subject>Animals</subject><subject>chromosomal inversion</subject><subject>Chromosome Inversion</subject><subject>Cod</subject><subject>Ecotype</subject><subject>Gadus morhua</subject><subject>Gadus morhua - genetics</subject><subject>gene flow</subject><subject>Genetic Linkage</subject><subject>Genetics, Population</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Haplotypes</subject><subject>Linkage Disequilibrium</subject><subject>local adaptation</subject><subject>Norway</subject><subject>Polymorphism, Single Nucleotide</subject><subject>recombination</subject><subject>Selection, Genetic</subject><subject>Sequence Analysis, DNA</subject><subject>supergene</subject><subject>swim bladder</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0k9vFCEUAPCJ0dht9eAXUBIvepiWP8MAx2at1WRbD26jN8LAmw3rzrAF1u1-e9lu24OJkYQQwu-9PHhU1RuCT0kZZwPYU8K4os-qCWEtr6lqfj6vJli1tCZYsqPqOKUlxoRRzl9WR7RVlHHcTKo43wZk3NJYGDPy42-IyYcxocH4MZeJFjCGwVvkfN9DLMqbXATqIG8BRjT4RTQ5xB0yo0Mp35-asgUb8m4NCYUeneeVKZEW2eBeVS96s0rw-mE9qW4-X8ynX-rZt8uv0_NZbZtG0rpzEtq2F1J2jBmJGVbSNJQbTHGHCXFWCgKMWyeUUEYI5xjvZMOEAVCGspPqwyHvOobbDaSsB58srEolEDZJE4llKwWX5P9UKMIYI4oV-v4vugybOJaL7BXmpFTQFvXxoGwMKUXo9Tr6obyKJljve6ZLz_R9z4p9-5Bx0w3gnuRjkwo4O4CtX8Hu35n01cX0MWV9iPApw91ThIm_dCuY4PrH9aWezvH11eyT1Hv_7uB7E7RZRJ_0zXeKSVu-DKdKYPYHI1S45g</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Kirubakaran, Tina Graceline</creator><creator>Grove, Harald</creator><creator>Kent, Matthew P.</creator><creator>Sandve, Simen R.</creator><creator>Baranski, Matthew</creator><creator>Nome, Torfinn</creator><creator>De Rosa, Maria Cristina</creator><creator>Righino, Benedetta</creator><creator>Johansen, Torild</creator><creator>Otterå, Håkon</creator><creator>Sonesson, Anna</creator><creator>Lien, Sigbjørn</creator><creator>Andersen, Øivind</creator><general>John Wiley & Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201605</creationdate><title>Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod</title><author>Kirubakaran, Tina Graceline ; Grove, Harald ; Kent, Matthew P. ; Sandve, Simen R. ; Baranski, Matthew ; Nome, Torfinn ; De Rosa, Maria Cristina ; Righino, Benedetta ; Johansen, Torild ; Otterå, Håkon ; Sonesson, Anna ; Lien, Sigbjørn ; Andersen, Øivind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-bd8e66f788b33a803098a425a020b011dc871e35cd7979a77dd35b8437aee9a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Migration</topic><topic>Animals</topic><topic>chromosomal inversion</topic><topic>Chromosome Inversion</topic><topic>Cod</topic><topic>Ecotype</topic><topic>Gadus morhua</topic><topic>Gadus morhua - genetics</topic><topic>gene flow</topic><topic>Genetic Linkage</topic><topic>Genetics, Population</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Haplotypes</topic><topic>Linkage Disequilibrium</topic><topic>local adaptation</topic><topic>Norway</topic><topic>Polymorphism, Single Nucleotide</topic><topic>recombination</topic><topic>Selection, Genetic</topic><topic>Sequence Analysis, DNA</topic><topic>supergene</topic><topic>swim bladder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirubakaran, Tina Graceline</creatorcontrib><creatorcontrib>Grove, Harald</creatorcontrib><creatorcontrib>Kent, Matthew P.</creatorcontrib><creatorcontrib>Sandve, Simen R.</creatorcontrib><creatorcontrib>Baranski, Matthew</creatorcontrib><creatorcontrib>Nome, Torfinn</creatorcontrib><creatorcontrib>De Rosa, Maria Cristina</creatorcontrib><creatorcontrib>Righino, Benedetta</creatorcontrib><creatorcontrib>Johansen, Torild</creatorcontrib><creatorcontrib>Otterå, Håkon</creatorcontrib><creatorcontrib>Sonesson, Anna</creatorcontrib><creatorcontrib>Lien, Sigbjørn</creatorcontrib><creatorcontrib>Andersen, Øivind</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirubakaran, Tina Graceline</au><au>Grove, Harald</au><au>Kent, Matthew P.</au><au>Sandve, Simen R.</au><au>Baranski, Matthew</au><au>Nome, Torfinn</au><au>De Rosa, Maria Cristina</au><au>Righino, Benedetta</au><au>Johansen, Torild</au><au>Otterå, Håkon</au><au>Sonesson, Anna</au><au>Lien, Sigbjørn</au><au>Andersen, Øivind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2016-05</date><risdate>2016</risdate><volume>25</volume><issue>10</issue><spage>2130</spage><epage>2143</epage><pages>2130-2143</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Atlantic cod is composed of multiple migratory and stationary populations widely distributed in the North Atlantic Ocean. The Northeast Arctic cod (NEAC) population in the Barents Sea undertakes annual spawning migrations to the northern Norwegian coast. Although spawning occurs sympatrically with the stationary Norwegian coastal cod (NCC), phenotypic and genetic differences between NEAC and NCC are maintained. In this study, we resolve the enigma by revealing the mechanisms underlying these differences. Extended linkage disequilibrium (LD) and population divergence were demonstrated in a 17.4‐Mb region on linkage group 1 (LG1) based on genotypes of 494 SNPs from 192 parents of farmed families of NEAC, NCC or NEACxNCC crosses. Linkage analyses revealed two adjacent inversions within this region that repress meiotic recombination in NEACxNCC crosses. We identified a NEAC‐specific haplotype consisting of 186 SNPs that was fixed in NEAC sampled from the Barents Sea, but segregating under Hardy–Weinberg equilibrium in eight NCC stocks. Comparative genomic analyses determine the NEAC configuration of the inversions to be the derived state and date it to ~1.6–2.0 Mya. The haplotype block harbours 763 genes, including candidates regulating swim bladder pressure, haem synthesis and skeletal muscle organization conferring adaptation to long‐distance migrations and vertical movements down to large depths. Our results suggest that the migratory ecotype experiences strong directional selection for the two adjacent inversions on LG1. Despite interbreeding between NEAC and NCC, the inversions are maintaining genetic differentiation, and we hypothesize the co‐occurrence of multiple adaptive alleles forming a ‘supergene’ in the NEAC population.</abstract><cop>England</cop><pub>John Wiley & Sons, Ltd</pub><pmid>26923504</pmid><doi>10.1111/mec.13592</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-1083 |
ispartof | Molecular ecology, 2016-05, Vol.25 (10), p.2130-2143 |
issn | 0962-1083 1365-294X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808687581 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal Migration Animals chromosomal inversion Chromosome Inversion Cod Ecotype Gadus morhua Gadus morhua - genetics gene flow Genetic Linkage Genetics, Population Genomics Genotype Haplotypes Linkage Disequilibrium local adaptation Norway Polymorphism, Single Nucleotide recombination Selection, Genetic Sequence Analysis, DNA supergene swim bladder |
title | Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20adjacent%20inversions%20maintain%20genomic%20differentiation%20between%20migratory%20and%20stationary%20ecotypes%20of%20Atlantic%20cod&rft.jtitle=Molecular%20ecology&rft.au=Kirubakaran,%20Tina%20Graceline&rft.date=2016-05&rft.volume=25&rft.issue=10&rft.spage=2130&rft.epage=2143&rft.pages=2130-2143&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13592&rft_dat=%3Cproquest_cross%3E1791333193%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790518436&rft_id=info:pmid/26923504&rfr_iscdi=true |