Degradation of artificial sweeteners via direct and indirect photochemical reactions

We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2016-07, Vol.23 (13), p.13288-13297
Hauptverfasser: Perkola, Noora, Vaalgamaa, Sanna, Jernberg, Joonas, Vähätalo, Anssi V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13297
container_issue 13
container_start_page 13288
container_title Environmental science and pollution research international
container_volume 23
creator Perkola, Noora
Vaalgamaa, Sanna
Jernberg, Joonas
Vähätalo, Anssi V.
description We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.
doi_str_mv 10.1007/s11356-016-6489-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808659535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4093448411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7rr6A7xIwYuXar7THGX9BMHLeg7ZdLqbpR9r0ir-e1u6igjiKQx55p0ZHoROCb4kGKurSAgTMsVEppJnOuV7aEok4aniWu-jKdacp4RxPkFHMW4wplhTdYgmVGHKMiKnaHEDq2Bz2_qmTpoisaH1hXfelkl8B2ihhhCTN2-T3AdwbWLrPPH1rtium7Zxa6i86xsCWDfkxGN0UNgywsnunaGXu9vF_CF9er5_nF8_pY5z2qZWK0tAZVJpnoOkQhGpmcZCA1kqEFyAw9jl_a1yCZpr0KzgMssZz7AsOJuhizF3G5rXDmJrKh8dlKWtoemiIRnOpNCCif9RpTNFmRQDev4L3TRdqPtDBkopxQQdKDJSLjQxBijMNvjKhg9DsBnsmNGO6e2YwY4Z9j3bJXfLCvLvji8dPUBHIPZf9QrCj9F_pn4CaRyYsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797773525</pqid></control><display><type>article</type><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</creator><creatorcontrib>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</creatorcontrib><description>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (&gt;290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-016-6489-4</identifier><identifier>PMID: 27023816</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Aquatic Pollution ; Aqueous solutions ; Artificial sweeteners ; Atmospheric Protection/Air Quality Control/Air Pollution ; Chemical oxygen demand ; Cyclamates - chemistry ; Cyclamates - radiation effects ; Dissolved organic matter ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Experiments ; Half-Life ; Ligands ; Nitrates ; Photochemical reactions ; Photochemicals ; Photochemistry ; Photodegradation ; Photolysis ; Potassium ; Radioactive half-life ; Research Article ; Saccharin - chemistry ; Saccharin - radiation effects ; Scientific imaging ; Solar radiation ; Studies ; Sucrose - analogs &amp; derivatives ; Sucrose - chemistry ; Sucrose - radiation effects ; Surface water ; Sweetening Agents - chemistry ; Sweetening Agents - radiation effects ; Thiazines - chemistry ; Thiazines - radiation effects ; Ultraviolet radiation ; Ultraviolet Rays ; Waste Water Technology ; Water Management ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - radiation effects ; Water Pollution Control ; Water Purification ; Water treatment</subject><ispartof>Environmental science and pollution research international, 2016-07, Vol.23 (13), p.13288-13297</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</citedby><cites>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-016-6489-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-016-6489-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27023816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkola, Noora</creatorcontrib><creatorcontrib>Vaalgamaa, Sanna</creatorcontrib><creatorcontrib>Jernberg, Joonas</creatorcontrib><creatorcontrib>Vähätalo, Anssi V.</creatorcontrib><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (&gt;290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</description><subject>Acids</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Artificial sweeteners</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Chemical oxygen demand</subject><subject>Cyclamates - chemistry</subject><subject>Cyclamates - radiation effects</subject><subject>Dissolved organic matter</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Experiments</subject><subject>Half-Life</subject><subject>Ligands</subject><subject>Nitrates</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Photolysis</subject><subject>Potassium</subject><subject>Radioactive half-life</subject><subject>Research Article</subject><subject>Saccharin - chemistry</subject><subject>Saccharin - radiation effects</subject><subject>Scientific imaging</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>Sucrose - analogs &amp; derivatives</subject><subject>Sucrose - chemistry</subject><subject>Sucrose - radiation effects</subject><subject>Surface water</subject><subject>Sweetening Agents - chemistry</subject><subject>Sweetening Agents - radiation effects</subject><subject>Thiazines - chemistry</subject><subject>Thiazines - radiation effects</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - radiation effects</subject><subject>Water Pollution Control</subject><subject>Water Purification</subject><subject>Water treatment</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMo7rr6A7xIwYuXar7THGX9BMHLeg7ZdLqbpR9r0ir-e1u6igjiKQx55p0ZHoROCb4kGKurSAgTMsVEppJnOuV7aEok4aniWu-jKdacp4RxPkFHMW4wplhTdYgmVGHKMiKnaHEDq2Bz2_qmTpoisaH1hXfelkl8B2ihhhCTN2-T3AdwbWLrPPH1rtium7Zxa6i86xsCWDfkxGN0UNgywsnunaGXu9vF_CF9er5_nF8_pY5z2qZWK0tAZVJpnoOkQhGpmcZCA1kqEFyAw9jl_a1yCZpr0KzgMssZz7AsOJuhizF3G5rXDmJrKh8dlKWtoemiIRnOpNCCif9RpTNFmRQDev4L3TRdqPtDBkopxQQdKDJSLjQxBijMNvjKhg9DsBnsmNGO6e2YwY4Z9j3bJXfLCvLvji8dPUBHIPZf9QrCj9F_pn4CaRyYsQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Perkola, Noora</creator><creator>Vaalgamaa, Sanna</creator><creator>Jernberg, Joonas</creator><creator>Vähätalo, Anssi V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20160701</creationdate><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><author>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Artificial sweeteners</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Chemical oxygen demand</topic><topic>Cyclamates - chemistry</topic><topic>Cyclamates - radiation effects</topic><topic>Dissolved organic matter</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Experiments</topic><topic>Half-Life</topic><topic>Ligands</topic><topic>Nitrates</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Photolysis</topic><topic>Potassium</topic><topic>Radioactive half-life</topic><topic>Research Article</topic><topic>Saccharin - chemistry</topic><topic>Saccharin - radiation effects</topic><topic>Scientific imaging</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>Sucrose - analogs &amp; derivatives</topic><topic>Sucrose - chemistry</topic><topic>Sucrose - radiation effects</topic><topic>Surface water</topic><topic>Sweetening Agents - chemistry</topic><topic>Sweetening Agents - radiation effects</topic><topic>Thiazines - chemistry</topic><topic>Thiazines - radiation effects</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - radiation effects</topic><topic>Water Pollution Control</topic><topic>Water Purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkola, Noora</creatorcontrib><creatorcontrib>Vaalgamaa, Sanna</creatorcontrib><creatorcontrib>Jernberg, Joonas</creatorcontrib><creatorcontrib>Vähätalo, Anssi V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkola, Noora</au><au>Vaalgamaa, Sanna</au><au>Jernberg, Joonas</au><au>Vähätalo, Anssi V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation of artificial sweeteners via direct and indirect photochemical reactions</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>23</volume><issue>13</issue><spage>13288</spage><epage>13297</epage><pages>13288-13297</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (&gt;290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27023816</pmid><doi>10.1007/s11356-016-6489-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2016-07, Vol.23 (13), p.13288-13297
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_1808659535
source MEDLINE; SpringerLink Journals
subjects Acids
Aquatic Pollution
Aqueous solutions
Artificial sweeteners
Atmospheric Protection/Air Quality Control/Air Pollution
Chemical oxygen demand
Cyclamates - chemistry
Cyclamates - radiation effects
Dissolved organic matter
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Experiments
Half-Life
Ligands
Nitrates
Photochemical reactions
Photochemicals
Photochemistry
Photodegradation
Photolysis
Potassium
Radioactive half-life
Research Article
Saccharin - chemistry
Saccharin - radiation effects
Scientific imaging
Solar radiation
Studies
Sucrose - analogs & derivatives
Sucrose - chemistry
Sucrose - radiation effects
Surface water
Sweetening Agents - chemistry
Sweetening Agents - radiation effects
Thiazines - chemistry
Thiazines - radiation effects
Ultraviolet radiation
Ultraviolet Rays
Waste Water Technology
Water Management
Water Pollutants, Chemical - chemistry
Water Pollutants, Chemical - radiation effects
Water Pollution Control
Water Purification
Water treatment
title Degradation of artificial sweeteners via direct and indirect photochemical reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20of%20artificial%20sweeteners%20via%20direct%20and%20indirect%20photochemical%20reactions&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Perkola,%20Noora&rft.date=2016-07-01&rft.volume=23&rft.issue=13&rft.spage=13288&rft.epage=13297&rft.pages=13288-13297&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-016-6489-4&rft_dat=%3Cproquest_cross%3E4093448411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797773525&rft_id=info:pmid/27023816&rfr_iscdi=true