Degradation of artificial sweeteners via direct and indirect photochemical reactions
We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2016-07, Vol.23 (13), p.13288-13297 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13297 |
---|---|
container_issue | 13 |
container_start_page | 13288 |
container_title | Environmental science and pollution research international |
container_volume | 23 |
creator | Perkola, Noora Vaalgamaa, Sanna Jernberg, Joonas Vähätalo, Anssi V. |
description | We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment. |
doi_str_mv | 10.1007/s11356-016-6489-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808659535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4093448411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMo7rr6A7xIwYuXar7THGX9BMHLeg7ZdLqbpR9r0ir-e1u6igjiKQx55p0ZHoROCb4kGKurSAgTMsVEppJnOuV7aEok4aniWu-jKdacp4RxPkFHMW4wplhTdYgmVGHKMiKnaHEDq2Bz2_qmTpoisaH1hXfelkl8B2ihhhCTN2-T3AdwbWLrPPH1rtium7Zxa6i86xsCWDfkxGN0UNgywsnunaGXu9vF_CF9er5_nF8_pY5z2qZWK0tAZVJpnoOkQhGpmcZCA1kqEFyAw9jl_a1yCZpr0KzgMssZz7AsOJuhizF3G5rXDmJrKh8dlKWtoemiIRnOpNCCif9RpTNFmRQDev4L3TRdqPtDBkopxQQdKDJSLjQxBijMNvjKhg9DsBnsmNGO6e2YwY4Z9j3bJXfLCvLvji8dPUBHIPZf9QrCj9F_pn4CaRyYsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797773525</pqid></control><display><type>article</type><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</creator><creatorcontrib>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</creatorcontrib><description>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-016-6489-4</identifier><identifier>PMID: 27023816</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids ; Aquatic Pollution ; Aqueous solutions ; Artificial sweeteners ; Atmospheric Protection/Air Quality Control/Air Pollution ; Chemical oxygen demand ; Cyclamates - chemistry ; Cyclamates - radiation effects ; Dissolved organic matter ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Experiments ; Half-Life ; Ligands ; Nitrates ; Photochemical reactions ; Photochemicals ; Photochemistry ; Photodegradation ; Photolysis ; Potassium ; Radioactive half-life ; Research Article ; Saccharin - chemistry ; Saccharin - radiation effects ; Scientific imaging ; Solar radiation ; Studies ; Sucrose - analogs & derivatives ; Sucrose - chemistry ; Sucrose - radiation effects ; Surface water ; Sweetening Agents - chemistry ; Sweetening Agents - radiation effects ; Thiazines - chemistry ; Thiazines - radiation effects ; Ultraviolet radiation ; Ultraviolet Rays ; Waste Water Technology ; Water Management ; Water Pollutants, Chemical - chemistry ; Water Pollutants, Chemical - radiation effects ; Water Pollution Control ; Water Purification ; Water treatment</subject><ispartof>Environmental science and pollution research international, 2016-07, Vol.23 (13), p.13288-13297</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</citedby><cites>FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-016-6489-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-016-6489-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27023816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perkola, Noora</creatorcontrib><creatorcontrib>Vaalgamaa, Sanna</creatorcontrib><creatorcontrib>Jernberg, Joonas</creatorcontrib><creatorcontrib>Vähätalo, Anssi V.</creatorcontrib><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</description><subject>Acids</subject><subject>Aquatic Pollution</subject><subject>Aqueous solutions</subject><subject>Artificial sweeteners</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Chemical oxygen demand</subject><subject>Cyclamates - chemistry</subject><subject>Cyclamates - radiation effects</subject><subject>Dissolved organic matter</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Experiments</subject><subject>Half-Life</subject><subject>Ligands</subject><subject>Nitrates</subject><subject>Photochemical reactions</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photodegradation</subject><subject>Photolysis</subject><subject>Potassium</subject><subject>Radioactive half-life</subject><subject>Research Article</subject><subject>Saccharin - chemistry</subject><subject>Saccharin - radiation effects</subject><subject>Scientific imaging</subject><subject>Solar radiation</subject><subject>Studies</subject><subject>Sucrose - analogs & derivatives</subject><subject>Sucrose - chemistry</subject><subject>Sucrose - radiation effects</subject><subject>Surface water</subject><subject>Sweetening Agents - chemistry</subject><subject>Sweetening Agents - radiation effects</subject><subject>Thiazines - chemistry</subject><subject>Thiazines - radiation effects</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Pollutants, Chemical - radiation effects</subject><subject>Water Pollution Control</subject><subject>Water Purification</subject><subject>Water treatment</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1LxDAQhoMo7rr6A7xIwYuXar7THGX9BMHLeg7ZdLqbpR9r0ir-e1u6igjiKQx55p0ZHoROCb4kGKurSAgTMsVEppJnOuV7aEok4aniWu-jKdacp4RxPkFHMW4wplhTdYgmVGHKMiKnaHEDq2Bz2_qmTpoisaH1hXfelkl8B2ihhhCTN2-T3AdwbWLrPPH1rtium7Zxa6i86xsCWDfkxGN0UNgywsnunaGXu9vF_CF9er5_nF8_pY5z2qZWK0tAZVJpnoOkQhGpmcZCA1kqEFyAw9jl_a1yCZpr0KzgMssZz7AsOJuhizF3G5rXDmJrKh8dlKWtoemiIRnOpNCCif9RpTNFmRQDev4L3TRdqPtDBkopxQQdKDJSLjQxBijMNvjKhg9DsBnsmNGO6e2YwY4Z9j3bJXfLCvLvji8dPUBHIPZf9QrCj9F_pn4CaRyYsQ</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Perkola, Noora</creator><creator>Vaalgamaa, Sanna</creator><creator>Jernberg, Joonas</creator><creator>Vähätalo, Anssi V.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20160701</creationdate><title>Degradation of artificial sweeteners via direct and indirect photochemical reactions</title><author>Perkola, Noora ; Vaalgamaa, Sanna ; Jernberg, Joonas ; Vähätalo, Anssi V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-a97a1e786794de625716939059e1b7e545ec00cd1006be949e93f468d34806f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Aquatic Pollution</topic><topic>Aqueous solutions</topic><topic>Artificial sweeteners</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Chemical oxygen demand</topic><topic>Cyclamates - chemistry</topic><topic>Cyclamates - radiation effects</topic><topic>Dissolved organic matter</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Experiments</topic><topic>Half-Life</topic><topic>Ligands</topic><topic>Nitrates</topic><topic>Photochemical reactions</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photodegradation</topic><topic>Photolysis</topic><topic>Potassium</topic><topic>Radioactive half-life</topic><topic>Research Article</topic><topic>Saccharin - chemistry</topic><topic>Saccharin - radiation effects</topic><topic>Scientific imaging</topic><topic>Solar radiation</topic><topic>Studies</topic><topic>Sucrose - analogs & derivatives</topic><topic>Sucrose - chemistry</topic><topic>Sucrose - radiation effects</topic><topic>Surface water</topic><topic>Sweetening Agents - chemistry</topic><topic>Sweetening Agents - radiation effects</topic><topic>Thiazines - chemistry</topic><topic>Thiazines - radiation effects</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Pollutants, Chemical - radiation effects</topic><topic>Water Pollution Control</topic><topic>Water Purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perkola, Noora</creatorcontrib><creatorcontrib>Vaalgamaa, Sanna</creatorcontrib><creatorcontrib>Jernberg, Joonas</creatorcontrib><creatorcontrib>Vähätalo, Anssi V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perkola, Noora</au><au>Vaalgamaa, Sanna</au><au>Jernberg, Joonas</au><au>Vähätalo, Anssi V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degradation of artificial sweeteners via direct and indirect photochemical reactions</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>23</volume><issue>13</issue><spage>13288</spage><epage>13297</epage><pages>13288-13297</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27023816</pmid><doi>10.1007/s11356-016-6489-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2016-07, Vol.23 (13), p.13288-13297 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808659535 |
source | MEDLINE; SpringerLink Journals |
subjects | Acids Aquatic Pollution Aqueous solutions Artificial sweeteners Atmospheric Protection/Air Quality Control/Air Pollution Chemical oxygen demand Cyclamates - chemistry Cyclamates - radiation effects Dissolved organic matter Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental science Experiments Half-Life Ligands Nitrates Photochemical reactions Photochemicals Photochemistry Photodegradation Photolysis Potassium Radioactive half-life Research Article Saccharin - chemistry Saccharin - radiation effects Scientific imaging Solar radiation Studies Sucrose - analogs & derivatives Sucrose - chemistry Sucrose - radiation effects Surface water Sweetening Agents - chemistry Sweetening Agents - radiation effects Thiazines - chemistry Thiazines - radiation effects Ultraviolet radiation Ultraviolet Rays Waste Water Technology Water Management Water Pollutants, Chemical - chemistry Water Pollutants, Chemical - radiation effects Water Pollution Control Water Purification Water treatment |
title | Degradation of artificial sweeteners via direct and indirect photochemical reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A03%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degradation%20of%20artificial%20sweeteners%20via%20direct%20and%20indirect%20photochemical%20reactions&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Perkola,%20Noora&rft.date=2016-07-01&rft.volume=23&rft.issue=13&rft.spage=13288&rft.epage=13297&rft.pages=13288-13297&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-016-6489-4&rft_dat=%3Cproquest_cross%3E4093448411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797773525&rft_id=info:pmid/27023816&rfr_iscdi=true |