Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oecologia 2016-07, Vol.181 (3), p.695-708
Hauptverfasser: Ebinger, Michael R, Mark A. Haroldson, Frank T. van Manen, Cecily M. Costello, Daniel D. Bjornlie, Daniel J. Thompson, Kerry A. Gunther, Jennifer K. Fortin, Justin E. Teisberg, Shannon R. Pils, P. J. White, Steven L. Cain, Paul C. Cross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 708
container_issue 3
container_start_page 695
container_title Oecologia
container_volume 181
creator Ebinger, Michael R
Mark A. Haroldson
Frank T. van Manen
Cecily M. Costello
Daniel D. Bjornlie
Daniel J. Thompson
Kerry A. Gunther
Jennifer K. Fortin
Justin E. Teisberg
Shannon R. Pils
P. J. White
Steven L. Cain
Paul C. Cross
description Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88 %, whereas the false-positive rate was 18–24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.
doi_str_mv 10.1007/s00442-016-3594-5
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808655047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48718456</jstor_id><sourcerecordid>48718456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-10bcf1f6109dfd278e72515e85b99eb678079f480f184510263df46f14ba408c3</originalsourceid><addsrcrecordid>eNqFks1u1DAUhSMEotPCA7AALLFhE7h2_LtEhQJSJRbQteUk16OMMvFgO5XSp8czKRViAStLPt851r3HVfWCwjsKoN4nAM5ZDVTWjTC8Fo-qDeUNq6lpzONqA8BMrQU3Z9V5SjsAyqkQT6szJo2igrFNNX7EjF0epi3ZxuHublxIiy6SOSEJnszTdh5dRtK52LmUMBXlBI-hdSM5hDTkIUzHq7SkjHuSccQ95rgQN_XElezbIS-kd9k9q554NyZ8fn9eVDdXn35cfqmvv33-evnhuu64oLmm0HaeeknB9L5nSqNiggrUojUGW6k0KOO5Bk91MQCTTe-59JS3joPumovq7Zp7iOHnjCnb_ZA6HEc3YZiTpRq0FAK4-j-qjNLSsKYp6Ju_0F2Y41QGOVFSKDhRdKW6GFKK6O0hDnsXF0vBHluza2u2tGaPrVlRPK_uk-d2j_2D43dNBWArkIo0bTH-8fQ_Ul-upl3KIT6Ecq2Oa5NFf73q3gXrSvvJ3nxnJaD8k7KgstVfDyK0uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797657033</pqid></control><display><type>article</type><title>Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ebinger, Michael R ; Mark A. Haroldson ; Frank T. van Manen ; Cecily M. Costello ; Daniel D. Bjornlie ; Daniel J. Thompson ; Kerry A. Gunther ; Jennifer K. Fortin ; Justin E. Teisberg ; Shannon R. Pils ; P. J. White ; Steven L. Cain ; Paul C. Cross</creator><creatorcontrib>Ebinger, Michael R ; Mark A. Haroldson ; Frank T. van Manen ; Cecily M. Costello ; Daniel D. Bjornlie ; Daniel J. Thompson ; Kerry A. Gunther ; Jennifer K. Fortin ; Justin E. Teisberg ; Shannon R. Pils ; P. J. White ; Steven L. Cain ; Paul C. Cross</creatorcontrib><description>Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88 %, whereas the false-positive rate was 18–24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-016-3594-5</identifier><identifier>PMID: 26971522</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>algorithms ; Animals ; Biomass ; Biomedical and Life Sciences ; Carnivores ; case studies ; collars ; data collection ; Ecology ; Ecosystem ; ecosystems ; Geographic Information Systems ; Global positioning systems ; GPS ; Grizzly bears ; Hydrology/Water Resources ; Life Sciences ; METHODS ; overeating ; Plant Sciences ; predation ; Predatory Behavior ; prediction ; Prediction models ; probability ; regression analysis ; Telemetry ; ungulates ; Ursidae ; Ursus arctos ; Wildlife</subject><ispartof>Oecologia, 2016-07, Vol.181 (3), p.695-708</ispartof><rights>Springer-Verlag Berlin Heidelberg (Outside the USA) 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-10bcf1f6109dfd278e72515e85b99eb678079f480f184510263df46f14ba408c3</citedby><cites>FETCH-LOGICAL-c451t-10bcf1f6109dfd278e72515e85b99eb678079f480f184510263df46f14ba408c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48718456$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48718456$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26971522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ebinger, Michael R</creatorcontrib><creatorcontrib>Mark A. Haroldson</creatorcontrib><creatorcontrib>Frank T. van Manen</creatorcontrib><creatorcontrib>Cecily M. Costello</creatorcontrib><creatorcontrib>Daniel D. Bjornlie</creatorcontrib><creatorcontrib>Daniel J. Thompson</creatorcontrib><creatorcontrib>Kerry A. Gunther</creatorcontrib><creatorcontrib>Jennifer K. Fortin</creatorcontrib><creatorcontrib>Justin E. Teisberg</creatorcontrib><creatorcontrib>Shannon R. Pils</creatorcontrib><creatorcontrib>P. J. White</creatorcontrib><creatorcontrib>Steven L. Cain</creatorcontrib><creatorcontrib>Paul C. Cross</creatorcontrib><title>Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>Oecologia</addtitle><description>Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88 %, whereas the false-positive rate was 18–24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.</description><subject>algorithms</subject><subject>Animals</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Carnivores</subject><subject>case studies</subject><subject>collars</subject><subject>data collection</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ecosystems</subject><subject>Geographic Information Systems</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Grizzly bears</subject><subject>Hydrology/Water Resources</subject><subject>Life Sciences</subject><subject>METHODS</subject><subject>overeating</subject><subject>Plant Sciences</subject><subject>predation</subject><subject>Predatory Behavior</subject><subject>prediction</subject><subject>Prediction models</subject><subject>probability</subject><subject>regression analysis</subject><subject>Telemetry</subject><subject>ungulates</subject><subject>Ursidae</subject><subject>Ursus arctos</subject><subject>Wildlife</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFks1u1DAUhSMEotPCA7AALLFhE7h2_LtEhQJSJRbQteUk16OMMvFgO5XSp8czKRViAStLPt851r3HVfWCwjsKoN4nAM5ZDVTWjTC8Fo-qDeUNq6lpzONqA8BMrQU3Z9V5SjsAyqkQT6szJo2igrFNNX7EjF0epi3ZxuHublxIiy6SOSEJnszTdh5dRtK52LmUMBXlBI-hdSM5hDTkIUzHq7SkjHuSccQ95rgQN_XElezbIS-kd9k9q554NyZ8fn9eVDdXn35cfqmvv33-evnhuu64oLmm0HaeeknB9L5nSqNiggrUojUGW6k0KOO5Bk91MQCTTe-59JS3joPumovq7Zp7iOHnjCnb_ZA6HEc3YZiTpRq0FAK4-j-qjNLSsKYp6Ju_0F2Y41QGOVFSKDhRdKW6GFKK6O0hDnsXF0vBHluza2u2tGaPrVlRPK_uk-d2j_2D43dNBWArkIo0bTH-8fQ_Ul-upl3KIT6Ecq2Oa5NFf73q3gXrSvvJ3nxnJaD8k7KgstVfDyK0uw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Ebinger, Michael R</creator><creator>Mark A. Haroldson</creator><creator>Frank T. van Manen</creator><creator>Cecily M. Costello</creator><creator>Daniel D. Bjornlie</creator><creator>Daniel J. Thompson</creator><creator>Kerry A. Gunther</creator><creator>Jennifer K. Fortin</creator><creator>Justin E. Teisberg</creator><creator>Shannon R. Pils</creator><creator>P. J. White</creator><creator>Steven L. Cain</creator><creator>Paul C. Cross</creator><general>Springer Berlin Heidelberg</general><general>Springer Science + Business Media</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20160701</creationdate><title>Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data</title><author>Ebinger, Michael R ; Mark A. Haroldson ; Frank T. van Manen ; Cecily M. Costello ; Daniel D. Bjornlie ; Daniel J. Thompson ; Kerry A. Gunther ; Jennifer K. Fortin ; Justin E. Teisberg ; Shannon R. Pils ; P. J. White ; Steven L. Cain ; Paul C. Cross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-10bcf1f6109dfd278e72515e85b99eb678079f480f184510263df46f14ba408c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>algorithms</topic><topic>Animals</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Carnivores</topic><topic>case studies</topic><topic>collars</topic><topic>data collection</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ecosystems</topic><topic>Geographic Information Systems</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Grizzly bears</topic><topic>Hydrology/Water Resources</topic><topic>Life Sciences</topic><topic>METHODS</topic><topic>overeating</topic><topic>Plant Sciences</topic><topic>predation</topic><topic>Predatory Behavior</topic><topic>prediction</topic><topic>Prediction models</topic><topic>probability</topic><topic>regression analysis</topic><topic>Telemetry</topic><topic>ungulates</topic><topic>Ursidae</topic><topic>Ursus arctos</topic><topic>Wildlife</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebinger, Michael R</creatorcontrib><creatorcontrib>Mark A. Haroldson</creatorcontrib><creatorcontrib>Frank T. van Manen</creatorcontrib><creatorcontrib>Cecily M. Costello</creatorcontrib><creatorcontrib>Daniel D. Bjornlie</creatorcontrib><creatorcontrib>Daniel J. Thompson</creatorcontrib><creatorcontrib>Kerry A. Gunther</creatorcontrib><creatorcontrib>Jennifer K. Fortin</creatorcontrib><creatorcontrib>Justin E. Teisberg</creatorcontrib><creatorcontrib>Shannon R. Pils</creatorcontrib><creatorcontrib>P. J. White</creatorcontrib><creatorcontrib>Steven L. Cain</creatorcontrib><creatorcontrib>Paul C. Cross</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebinger, Michael R</au><au>Mark A. Haroldson</au><au>Frank T. van Manen</au><au>Cecily M. Costello</au><au>Daniel D. Bjornlie</au><au>Daniel J. Thompson</au><au>Kerry A. Gunther</au><au>Jennifer K. Fortin</au><au>Justin E. Teisberg</au><au>Shannon R. Pils</au><au>P. J. White</au><au>Steven L. Cain</au><au>Paul C. Cross</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><addtitle>Oecologia</addtitle><date>2016-07-01</date><risdate>2016</risdate><volume>181</volume><issue>3</issue><spage>695</spage><epage>708</epage><pages>695-708</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88 %, whereas the false-positive rate was 18–24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26971522</pmid><doi>10.1007/s00442-016-3594-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-8549
ispartof Oecologia, 2016-07, Vol.181 (3), p.695-708
issn 0029-8549
1432-1939
language eng
recordid cdi_proquest_miscellaneous_1808655047
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings
subjects algorithms
Animals
Biomass
Biomedical and Life Sciences
Carnivores
case studies
collars
data collection
Ecology
Ecosystem
ecosystems
Geographic Information Systems
Global positioning systems
GPS
Grizzly bears
Hydrology/Water Resources
Life Sciences
METHODS
overeating
Plant Sciences
predation
Predatory Behavior
prediction
Prediction models
probability
regression analysis
Telemetry
ungulates
Ursidae
Ursus arctos
Wildlife
title Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20grizzly%20bear%20use%20of%20ungulate%20carcasses%20using%20global%20positioning%20system%20telemetry%20and%20activity%20data&rft.jtitle=Oecologia&rft.au=Ebinger,%20Michael%20R&rft.date=2016-07-01&rft.volume=181&rft.issue=3&rft.spage=695&rft.epage=708&rft.pages=695-708&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-016-3594-5&rft_dat=%3Cjstor_proqu%3E48718456%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797657033&rft_id=info:pmid/26971522&rft_jstor_id=48718456&rfr_iscdi=true