Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach
Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleot...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2016-08, Vol.75, p.181-189 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 181 |
container_title | Computers in biology and medicine |
container_volume | 75 |
creator | Bavi, Rohit Kumar, Raj Rampogu, Shailima Son, Minky Park, Chanin Baek, Ayoung Kim, Hyong-Ha Suh, Jung-Keun Park, Seok Ju Lee, Keun Woo |
description | Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori. |
doi_str_mv | 10.1016/j.compbiomed.2016.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808654791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482516301433</els_id><sourcerecordid>1802739524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotuFv4AsceGSZfyZhANSWyitVOAAPVteZ9J6SeJgJ5X23-NoWyr1VGkkS55n3tHMO4RQBhsGTH_cbVzox60PPTYbnn82kAPUC7JiVVkXoIR8SVYADApZcXVEjlPaAYAEAa_JES8FU0qrFZm-hw7d3NlI_TBhtG7yYUg0tPT6Lp7SMYYJ_UDt0NAvP05oG0NPL7DzLmwzi5GO-y5ETz_RyyH5m9tp0QnU0v6_cB-aXDDcUDtmOetu35BXre0Svr1_1-T6_Ovvs4vi6ue3y7OTq8LJGqaCVwq11rXmClxVOdAtd1BqJRunBGdc41ajZU2lZSvBculqaKq2rEWLUrRiTT4cdHPbvzOmyfQ-Oew6O2CYk2EVVFmtrNlz0Ly0WnGZ0fdP0F2Y45AHOVBKZL1MVQfKxZBSxNaM0fc27g0Ds5hodubRRLOYaCBHtm5N3t03mLdL7qHwwbUMnB4AzMu78xhNch4Hh42P6CbTBP-cLp-fiLhskne2-4N7TI8zmcQNmF_LMS23xLQAJoUQ_wDWiMZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802753913</pqid></control><display><type>article</type><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</creator><creatorcontrib>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</creatorcontrib><description>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2016.06.005</identifier><identifier>PMID: 27315565</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Substitution ; Amino acids ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Conflicts of interest ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA repair ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; Free energy calculations ; Geometry ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Homology modeling and molecular dynamics simulations ; Internal Medicine ; Models, Molecular ; Mutation ; Mutation, Missense ; Nucleotide excision repair ; Other ; Proteins ; Quality ; Ulcers ; UvrB</subject><ispartof>Computers in biology and medicine, 2016-08, Vol.75, p.181-189</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Aug 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</citedby><cites>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1802753913?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27315565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavi, Rohit</creatorcontrib><creatorcontrib>Kumar, Raj</creatorcontrib><creatorcontrib>Rampogu, Shailima</creatorcontrib><creatorcontrib>Son, Minky</creatorcontrib><creatorcontrib>Park, Chanin</creatorcontrib><creatorcontrib>Baek, Ayoung</creatorcontrib><creatorcontrib>Kim, Hyong-Ha</creatorcontrib><creatorcontrib>Suh, Jung-Keun</creatorcontrib><creatorcontrib>Park, Seok Ju</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</description><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conflicts of interest</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA repair</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>Free energy calculations</subject><subject>Geometry</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Homology modeling and molecular dynamics simulations</subject><subject>Internal Medicine</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nucleotide excision repair</subject><subject>Other</subject><subject>Proteins</subject><subject>Quality</subject><subject>Ulcers</subject><subject>UvrB</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EotuFv4AsceGSZfyZhANSWyitVOAAPVteZ9J6SeJgJ5X23-NoWyr1VGkkS55n3tHMO4RQBhsGTH_cbVzox60PPTYbnn82kAPUC7JiVVkXoIR8SVYADApZcXVEjlPaAYAEAa_JES8FU0qrFZm-hw7d3NlI_TBhtG7yYUg0tPT6Lp7SMYYJ_UDt0NAvP05oG0NPL7DzLmwzi5GO-y5ETz_RyyH5m9tp0QnU0v6_cB-aXDDcUDtmOetu35BXre0Svr1_1-T6_Ovvs4vi6ue3y7OTq8LJGqaCVwq11rXmClxVOdAtd1BqJRunBGdc41ajZU2lZSvBculqaKq2rEWLUrRiTT4cdHPbvzOmyfQ-Oew6O2CYk2EVVFmtrNlz0Ly0WnGZ0fdP0F2Y45AHOVBKZL1MVQfKxZBSxNaM0fc27g0Ds5hodubRRLOYaCBHtm5N3t03mLdL7qHwwbUMnB4AzMu78xhNch4Hh42P6CbTBP-cLp-fiLhskne2-4N7TI8zmcQNmF_LMS23xLQAJoUQ_wDWiMZO</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Bavi, Rohit</creator><creator>Kumar, Raj</creator><creator>Rampogu, Shailima</creator><creator>Son, Minky</creator><creator>Park, Chanin</creator><creator>Baek, Ayoung</creator><creator>Kim, Hyong-Ha</creator><creator>Suh, Jung-Keun</creator><creator>Park, Seok Ju</creator><creator>Lee, Keun Woo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>20160801</creationdate><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><author>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conflicts of interest</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA repair</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>Free energy calculations</topic><topic>Geometry</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Homology modeling and molecular dynamics simulations</topic><topic>Internal Medicine</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nucleotide excision repair</topic><topic>Other</topic><topic>Proteins</topic><topic>Quality</topic><topic>Ulcers</topic><topic>UvrB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavi, Rohit</creatorcontrib><creatorcontrib>Kumar, Raj</creatorcontrib><creatorcontrib>Rampogu, Shailima</creatorcontrib><creatorcontrib>Son, Minky</creatorcontrib><creatorcontrib>Park, Chanin</creatorcontrib><creatorcontrib>Baek, Ayoung</creatorcontrib><creatorcontrib>Kim, Hyong-Ha</creatorcontrib><creatorcontrib>Suh, Jung-Keun</creatorcontrib><creatorcontrib>Park, Seok Ju</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavi, Rohit</au><au>Kumar, Raj</au><au>Rampogu, Shailima</au><au>Son, Minky</au><au>Park, Chanin</au><au>Baek, Ayoung</au><au>Kim, Hyong-Ha</au><au>Suh, Jung-Keun</au><au>Park, Seok Ju</au><au>Lee, Keun Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>75</volume><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27315565</pmid><doi>10.1016/j.compbiomed.2016.06.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2016-08, Vol.75, p.181-189 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808654791 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Amino Acid Substitution Amino acids Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Conflicts of interest Deoxyribonucleic acid DNA DNA damage DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA repair DNA, Bacterial - chemistry DNA, Bacterial - genetics DNA, Bacterial - metabolism Free energy calculations Geometry Helicobacter pylori Helicobacter pylori - enzymology Helicobacter pylori - genetics Homology modeling and molecular dynamics simulations Internal Medicine Models, Molecular Mutation Mutation, Missense Nucleotide excision repair Other Proteins Quality Ulcers UvrB |
title | Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interactions%20of%20UvrB%20protein%20and%20DNA%20from%20Helicobacter%20pylori%20:%20Insight%20into%20a%20molecular%20modeling%20approach&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Bavi,%20Rohit&rft.date=2016-08-01&rft.volume=75&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2016.06.005&rft_dat=%3Cproquest_cross%3E1802739524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802753913&rft_id=info:pmid/27315565&rft_els_id=S0010482516301433&rfr_iscdi=true |