Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach

Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2016-08, Vol.75, p.181-189
Hauptverfasser: Bavi, Rohit, Kumar, Raj, Rampogu, Shailima, Son, Minky, Park, Chanin, Baek, Ayoung, Kim, Hyong-Ha, Suh, Jung-Keun, Park, Seok Ju, Lee, Keun Woo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue
container_start_page 181
container_title Computers in biology and medicine
container_volume 75
creator Bavi, Rohit
Kumar, Raj
Rampogu, Shailima
Son, Minky
Park, Chanin
Baek, Ayoung
Kim, Hyong-Ha
Suh, Jung-Keun
Park, Seok Ju
Lee, Keun Woo
description Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.
doi_str_mv 10.1016/j.compbiomed.2016.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808654791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482516301433</els_id><sourcerecordid>1802739524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EotuFv4AsceGSZfyZhANSWyitVOAAPVteZ9J6SeJgJ5X23-NoWyr1VGkkS55n3tHMO4RQBhsGTH_cbVzox60PPTYbnn82kAPUC7JiVVkXoIR8SVYADApZcXVEjlPaAYAEAa_JES8FU0qrFZm-hw7d3NlI_TBhtG7yYUg0tPT6Lp7SMYYJ_UDt0NAvP05oG0NPL7DzLmwzi5GO-y5ETz_RyyH5m9tp0QnU0v6_cB-aXDDcUDtmOetu35BXre0Svr1_1-T6_Ovvs4vi6ue3y7OTq8LJGqaCVwq11rXmClxVOdAtd1BqJRunBGdc41ajZU2lZSvBculqaKq2rEWLUrRiTT4cdHPbvzOmyfQ-Oew6O2CYk2EVVFmtrNlz0Ly0WnGZ0fdP0F2Y45AHOVBKZL1MVQfKxZBSxNaM0fc27g0Ds5hodubRRLOYaCBHtm5N3t03mLdL7qHwwbUMnB4AzMu78xhNch4Hh42P6CbTBP-cLp-fiLhskne2-4N7TI8zmcQNmF_LMS23xLQAJoUQ_wDWiMZO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802753913</pqid></control><display><type>article</type><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</creator><creatorcontrib>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</creatorcontrib><description>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2016.06.005</identifier><identifier>PMID: 27315565</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Substitution ; Amino acids ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Conflicts of interest ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA repair ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; Free energy calculations ; Geometry ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Homology modeling and molecular dynamics simulations ; Internal Medicine ; Models, Molecular ; Mutation ; Mutation, Missense ; Nucleotide excision repair ; Other ; Proteins ; Quality ; Ulcers ; UvrB</subject><ispartof>Computers in biology and medicine, 2016-08, Vol.75, p.181-189</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Ltd.</rights><rights>Copyright Elsevier Limited Aug 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</citedby><cites>FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1802753913?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27315565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bavi, Rohit</creatorcontrib><creatorcontrib>Kumar, Raj</creatorcontrib><creatorcontrib>Rampogu, Shailima</creatorcontrib><creatorcontrib>Son, Minky</creatorcontrib><creatorcontrib>Park, Chanin</creatorcontrib><creatorcontrib>Baek, Ayoung</creatorcontrib><creatorcontrib>Kim, Hyong-Ha</creatorcontrib><creatorcontrib>Suh, Jung-Keun</creatorcontrib><creatorcontrib>Park, Seok Ju</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</description><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Conflicts of interest</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA repair</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>Free energy calculations</subject><subject>Geometry</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Homology modeling and molecular dynamics simulations</subject><subject>Internal Medicine</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Nucleotide excision repair</subject><subject>Other</subject><subject>Proteins</subject><subject>Quality</subject><subject>Ulcers</subject><subject>UvrB</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk1v1DAQhi0EotuFv4AsceGSZfyZhANSWyitVOAAPVteZ9J6SeJgJ5X23-NoWyr1VGkkS55n3tHMO4RQBhsGTH_cbVzox60PPTYbnn82kAPUC7JiVVkXoIR8SVYADApZcXVEjlPaAYAEAa_JES8FU0qrFZm-hw7d3NlI_TBhtG7yYUg0tPT6Lp7SMYYJ_UDt0NAvP05oG0NPL7DzLmwzi5GO-y5ETz_RyyH5m9tp0QnU0v6_cB-aXDDcUDtmOetu35BXre0Svr1_1-T6_Ovvs4vi6ue3y7OTq8LJGqaCVwq11rXmClxVOdAtd1BqJRunBGdc41ajZU2lZSvBculqaKq2rEWLUrRiTT4cdHPbvzOmyfQ-Oew6O2CYk2EVVFmtrNlz0Ly0WnGZ0fdP0F2Y45AHOVBKZL1MVQfKxZBSxNaM0fc27g0Ds5hodubRRLOYaCBHtm5N3t03mLdL7qHwwbUMnB4AzMu78xhNch4Hh42P6CbTBP-cLp-fiLhskne2-4N7TI8zmcQNmF_LMS23xLQAJoUQ_wDWiMZO</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Bavi, Rohit</creator><creator>Kumar, Raj</creator><creator>Rampogu, Shailima</creator><creator>Son, Minky</creator><creator>Park, Chanin</creator><creator>Baek, Ayoung</creator><creator>Kim, Hyong-Ha</creator><creator>Suh, Jung-Keun</creator><creator>Park, Seok Ju</creator><creator>Lee, Keun Woo</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>20160801</creationdate><title>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</title><author>Bavi, Rohit ; Kumar, Raj ; Rampogu, Shailima ; Son, Minky ; Park, Chanin ; Baek, Ayoung ; Kim, Hyong-Ha ; Suh, Jung-Keun ; Park, Seok Ju ; Lee, Keun Woo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-285e66696250c88c06f2c07654dc532126eb6ea1d864f40a24c90d8f793fe43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Conflicts of interest</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA repair</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>Free energy calculations</topic><topic>Geometry</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Homology modeling and molecular dynamics simulations</topic><topic>Internal Medicine</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Nucleotide excision repair</topic><topic>Other</topic><topic>Proteins</topic><topic>Quality</topic><topic>Ulcers</topic><topic>UvrB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bavi, Rohit</creatorcontrib><creatorcontrib>Kumar, Raj</creatorcontrib><creatorcontrib>Rampogu, Shailima</creatorcontrib><creatorcontrib>Son, Minky</creatorcontrib><creatorcontrib>Park, Chanin</creatorcontrib><creatorcontrib>Baek, Ayoung</creatorcontrib><creatorcontrib>Kim, Hyong-Ha</creatorcontrib><creatorcontrib>Suh, Jung-Keun</creatorcontrib><creatorcontrib>Park, Seok Ju</creatorcontrib><creatorcontrib>Lee, Keun Woo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bavi, Rohit</au><au>Kumar, Raj</au><au>Rampogu, Shailima</au><au>Son, Minky</au><au>Park, Chanin</au><au>Baek, Ayoung</au><au>Kim, Hyong-Ha</au><au>Suh, Jung-Keun</au><au>Park, Seok Ju</au><au>Lee, Keun Woo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>75</volume><spage>181</spage><epage>189</epage><pages>181-189</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract Helicobacter pylori ( H. pylori ) persevere in the human stomach, an environment in which they encounter many DNA-damaging conditions, including gastric acidity. The pathogenicity of H. pylori is enhanced by its well-developed DNA repair mechanism, thought of as ‘machinery,’ such as nucleotide excision repair (NER). NER involves multi-enzymatic excinuclease proteins (UvrABC endonuclease), which repair damaged DNA in a sequential manner. UvrB is the central component in prokaryotic NER, essential for damage recognition. Therefore, molecular modeling studies of UvrB protein from H. pylori are carried out with homology modeling and molecular dynamics (MD) simulations. The results reveal that the predicted structure is bound to a DNA hairpin with 3-bp stem, an 11-nucleotide loop, and 3-nt 3ˊ overhang. In addition, a mutation of the Y96A variant indicates reduction in the binding affinity for DNA. Free-energy calculations demonstrate the stability of the complex and help identify key residues in various interactions based on residue decomposition analysis. Stability comparative studies between wild type and mutant protein-DNA complexes indicate that the former is relatively more stable than the mutant form. This predicted model could also be useful in designing new inhibitors for UvrB protein, as well as preventing the pathogenesis of H. pylori.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27315565</pmid><doi>10.1016/j.compbiomed.2016.06.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2016-08, Vol.75, p.181-189
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_1808654791
source MEDLINE; ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Amino Acid Substitution
Amino acids
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Conflicts of interest
Deoxyribonucleic acid
DNA
DNA damage
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA repair
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
Free energy calculations
Geometry
Helicobacter pylori
Helicobacter pylori - enzymology
Helicobacter pylori - genetics
Homology modeling and molecular dynamics simulations
Internal Medicine
Models, Molecular
Mutation
Mutation, Missense
Nucleotide excision repair
Other
Proteins
Quality
Ulcers
UvrB
title Molecular interactions of UvrB protein and DNA from Helicobacter pylori : Insight into a molecular modeling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20interactions%20of%20UvrB%20protein%20and%20DNA%20from%20Helicobacter%20pylori%20:%20Insight%20into%20a%20molecular%20modeling%20approach&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Bavi,%20Rohit&rft.date=2016-08-01&rft.volume=75&rft.spage=181&rft.epage=189&rft.pages=181-189&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2016.06.005&rft_dat=%3Cproquest_cross%3E1802739524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802753913&rft_id=info:pmid/27315565&rft_els_id=S0010482516301433&rfr_iscdi=true