Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast

The effects of using plant ingredients in Senegalese sole ( Solea senegalensis ) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-08, Vol.100 (16), p.7223-7238
Hauptverfasser: Batista, S., Medina, A., Pires, M. A., Moriñigo, M. A., Sansuwan, K., Fernandes, J. M. O., Valente, L. M. P., Ozório, R. O. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7238
container_issue 16
container_start_page 7223
container_title Applied microbiology and biotechnology
container_volume 100
creator Batista, S.
Medina, A.
Pires, M. A.
Moriñigo, M. A.
Sansuwan, K.
Fernandes, J. M. O.
Valente, L. M. P.
Ozório, R. O. A.
description The effects of using plant ingredients in Senegalese sole ( Solea senegalensis ) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level.
doi_str_mv 10.1007/s00253-016-7592-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808651712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470523765</galeid><sourcerecordid>A470523765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-1c61dafb0cf5865624aeab20248f3a9a8719bde7faa768aa16a8dea365b508a43</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rj6A7yRgDcKdk3S5mMul2XVgQXB1etw2p7OZGmTmqSs8zf2F5sy68eIguTiQPK8L-fkvEXxnNEzRql6Gynloiopk6USa16qB8WK1RUvqWT1w2JFmRLLiz4pnsR4QynjWsrHxQlXTFfrtVoVdxvnICGx4zg7JAHj5F3EN8S6hDFZBwMZfZh2fvDbPQHXkdG2wTfWJyDtDtwWY4bJNTrcwoARSfQDkh47Mg3gEpmCT5iJzmKK5Nam3XK1GNg2Eh8IzMkP-5gFe4SYnhaPehgiPruvp8WXd5efLz6UVx_fby7Or8pWMp1KlksHfUPbXmgpJK8BoeGU17qvYA1asXXToeoBlNQATILuECopGkE11NVp8ergm7v5OudhzWhji0NuGv0cDdM0-zLF-P-gotZC1gv68g_0xs8hf-NCMcYkF7X8RS1fZqzrfQrQLqbmvFZU8EpJkamzv1D5dJiX4B32Nt8fCV4fCTKT8Fvawhyj2Vx_OmbZgc3bjDFgb6ZgRwh7w6hZ4mUO8TI5XmaJl1FZ8-J-uLkZsfup-JGnDPADEPNTjkb4bfp_un4H0FPayg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811162546</pqid></control><display><type>article</type><title>Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Batista, S. ; Medina, A. ; Pires, M. A. ; Moriñigo, M. A. ; Sansuwan, K. ; Fernandes, J. M. O. ; Valente, L. M. P. ; Ozório, R. O. A.</creator><creatorcontrib>Batista, S. ; Medina, A. ; Pires, M. A. ; Moriñigo, M. A. ; Sansuwan, K. ; Fernandes, J. M. O. ; Valente, L. M. P. ; Ozório, R. O. A.</creatorcontrib><description>The effects of using plant ingredients in Senegalese sole ( Solea senegalensis ) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7592-7</identifier><identifier>PMID: 27183997</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Feed ; Animal feeding and feeds ; Animals ; Applied Microbial and Cell Physiology ; Aquaculture ; Aquaculture - methods ; Bacteria ; Biomedical and Life Sciences ; Biotechnology ; Diet ; Dietary Supplements ; Ecology ; Experiments ; Feeding ; Feeds ; Fish ; Flatfishes - growth &amp; development ; Flatfishes - immunology ; Flatfishes - microbiology ; Food and nutrition ; Gastrointestinal Microbiome - drug effects ; Health aspects ; Histology ; Immune response ; Immune system ; Immunity, Innate - immunology ; Intestines ; Intestines - microbiology ; Laboratory animals ; Life Sciences ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Microbiota ; Microbiota (Symbiotic organisms) ; Morphology ; Pathogens ; Pneumoviridae ; Probiotics ; Probiotics - pharmacology ; Proteins ; Solea senegalensis ; Soles (Fishes) ; Statistical analysis ; Vegetable Proteins - pharmacology ; Vibrio ; Yeast ; Yeasts ; Yeasts (Fungi)</subject><ispartof>Applied microbiology and biotechnology, 2016-08, Vol.100 (16), p.7223-7238</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-1c61dafb0cf5865624aeab20248f3a9a8719bde7faa768aa16a8dea365b508a43</citedby><cites>FETCH-LOGICAL-c618t-1c61dafb0cf5865624aeab20248f3a9a8719bde7faa768aa16a8dea365b508a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7592-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7592-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27183997$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Batista, S.</creatorcontrib><creatorcontrib>Medina, A.</creatorcontrib><creatorcontrib>Pires, M. A.</creatorcontrib><creatorcontrib>Moriñigo, M. A.</creatorcontrib><creatorcontrib>Sansuwan, K.</creatorcontrib><creatorcontrib>Fernandes, J. M. O.</creatorcontrib><creatorcontrib>Valente, L. M. P.</creatorcontrib><creatorcontrib>Ozório, R. O. A.</creatorcontrib><title>Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The effects of using plant ingredients in Senegalese sole ( Solea senegalensis ) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level.</description><subject>Animal Feed</subject><subject>Animal feeding and feeds</subject><subject>Animals</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Aquaculture</subject><subject>Aquaculture - methods</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Diet</subject><subject>Dietary Supplements</subject><subject>Ecology</subject><subject>Experiments</subject><subject>Feeding</subject><subject>Feeds</subject><subject>Fish</subject><subject>Flatfishes - growth &amp; development</subject><subject>Flatfishes - immunology</subject><subject>Flatfishes - microbiology</subject><subject>Food and nutrition</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Health aspects</subject><subject>Histology</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate - immunology</subject><subject>Intestines</subject><subject>Intestines - microbiology</subject><subject>Laboratory animals</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Morphology</subject><subject>Pathogens</subject><subject>Pneumoviridae</subject><subject>Probiotics</subject><subject>Probiotics - pharmacology</subject><subject>Proteins</subject><subject>Solea senegalensis</subject><subject>Soles (Fishes)</subject><subject>Statistical analysis</subject><subject>Vegetable Proteins - pharmacology</subject><subject>Vibrio</subject><subject>Yeast</subject><subject>Yeasts</subject><subject>Yeasts (Fungi)</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl2L1DAUhoso7rj6A7yRgDcKdk3S5mMul2XVgQXB1etw2p7OZGmTmqSs8zf2F5sy68eIguTiQPK8L-fkvEXxnNEzRql6Gynloiopk6USa16qB8WK1RUvqWT1w2JFmRLLiz4pnsR4QynjWsrHxQlXTFfrtVoVdxvnICGx4zg7JAHj5F3EN8S6hDFZBwMZfZh2fvDbPQHXkdG2wTfWJyDtDtwWY4bJNTrcwoARSfQDkh47Mg3gEpmCT5iJzmKK5Nam3XK1GNg2Eh8IzMkP-5gFe4SYnhaPehgiPruvp8WXd5efLz6UVx_fby7Or8pWMp1KlksHfUPbXmgpJK8BoeGU17qvYA1asXXToeoBlNQATILuECopGkE11NVp8ergm7v5OudhzWhji0NuGv0cDdM0-zLF-P-gotZC1gv68g_0xs8hf-NCMcYkF7X8RS1fZqzrfQrQLqbmvFZU8EpJkamzv1D5dJiX4B32Nt8fCV4fCTKT8Fvawhyj2Vx_OmbZgc3bjDFgb6ZgRwh7w6hZ4mUO8TI5XmaJl1FZ8-J-uLkZsfup-JGnDPADEPNTjkb4bfp_un4H0FPayg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Batista, S.</creator><creator>Medina, A.</creator><creator>Pires, M. A.</creator><creator>Moriñigo, M. A.</creator><creator>Sansuwan, K.</creator><creator>Fernandes, J. M. O.</creator><creator>Valente, L. M. P.</creator><creator>Ozório, R. O. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7T5</scope><scope>H94</scope></search><sort><creationdate>20160801</creationdate><title>Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast</title><author>Batista, S. ; Medina, A. ; Pires, M. A. ; Moriñigo, M. A. ; Sansuwan, K. ; Fernandes, J. M. O. ; Valente, L. M. P. ; Ozório, R. O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-1c61dafb0cf5865624aeab20248f3a9a8719bde7faa768aa16a8dea365b508a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal Feed</topic><topic>Animal feeding and feeds</topic><topic>Animals</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Aquaculture</topic><topic>Aquaculture - methods</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Diet</topic><topic>Dietary Supplements</topic><topic>Ecology</topic><topic>Experiments</topic><topic>Feeding</topic><topic>Feeds</topic><topic>Fish</topic><topic>Flatfishes - growth &amp; development</topic><topic>Flatfishes - immunology</topic><topic>Flatfishes - microbiology</topic><topic>Food and nutrition</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Health aspects</topic><topic>Histology</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate - immunology</topic><topic>Intestines</topic><topic>Intestines - microbiology</topic><topic>Laboratory animals</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Morphology</topic><topic>Pathogens</topic><topic>Pneumoviridae</topic><topic>Probiotics</topic><topic>Probiotics - pharmacology</topic><topic>Proteins</topic><topic>Solea senegalensis</topic><topic>Soles (Fishes)</topic><topic>Statistical analysis</topic><topic>Vegetable Proteins - pharmacology</topic><topic>Vibrio</topic><topic>Yeast</topic><topic>Yeasts</topic><topic>Yeasts (Fungi)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batista, S.</creatorcontrib><creatorcontrib>Medina, A.</creatorcontrib><creatorcontrib>Pires, M. A.</creatorcontrib><creatorcontrib>Moriñigo, M. A.</creatorcontrib><creatorcontrib>Sansuwan, K.</creatorcontrib><creatorcontrib>Fernandes, J. M. O.</creatorcontrib><creatorcontrib>Valente, L. M. P.</creatorcontrib><creatorcontrib>Ozório, R. O. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batista, S.</au><au>Medina, A.</au><au>Pires, M. A.</au><au>Moriñigo, M. A.</au><au>Sansuwan, K.</au><au>Fernandes, J. M. O.</au><au>Valente, L. M. P.</au><au>Ozório, R. O. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>100</volume><issue>16</issue><spage>7223</spage><epage>7238</epage><pages>7223-7238</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The effects of using plant ingredients in Senegalese sole ( Solea senegalensis ) diet on immune competence and intestine morphology and microbial ecology are still controversial. Probiotics or immunostimulants can potentially alter the intestinal microbiota in a way that protects fish against pathogens. The current study aimed to examine the intestine histology and microbiota and humoral innate immune response in juvenile sole fed diets with low (35 %) or high (72 %) content of plant protein (PP) ingredients supplemented with a multispecies probiotic bacteria or autolysed yeast. Fish fed the probiotic diet had lower growth performance. Lysozyme and complement activities were significantly higher in fish fed PP72 diets than in their counterparts fed PP35 diets after 17 and 38 days of feeding. At 2 days of feeding, fish fed unsupplemented PP72 showed larger intestine section area and longer villus than fish fed unsupplemented PP35. At 17 days of feeding, fish fed unsupplemented PP72 showed more goblet cells than the other dietary groups, except the group fed yeast supplemented PP35 diet. High dietary PP level, acutely stimulate fish innate immune defence of the fish after 2 and 17 days of feeding. However, this effect does not occur after 73 days of feeding, suggesting a habituation to dietary treatments and/or immunosuppression, with a reduction in the number of the goblet cells. Fish fed for 38 days with diets supplemented with autolysed yeast showed longer intestinal villus. The predominant bacteria found in sole intestine were Vibrio sp. and dietary probiotic supplementation caused a reduction in Vibrio content, regardless of the PP level.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27183997</pmid><doi>10.1007/s00253-016-7592-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-08, Vol.100 (16), p.7223-7238
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1808651712
source MEDLINE; SpringerNature Journals
subjects Animal Feed
Animal feeding and feeds
Animals
Applied Microbial and Cell Physiology
Aquaculture
Aquaculture - methods
Bacteria
Biomedical and Life Sciences
Biotechnology
Diet
Dietary Supplements
Ecology
Experiments
Feeding
Feeds
Fish
Flatfishes - growth & development
Flatfishes - immunology
Flatfishes - microbiology
Food and nutrition
Gastrointestinal Microbiome - drug effects
Health aspects
Histology
Immune response
Immune system
Immunity, Innate - immunology
Intestines
Intestines - microbiology
Laboratory animals
Life Sciences
Methods
Microbial Genetics and Genomics
Microbiology
Microbiota
Microbiota (Symbiotic organisms)
Morphology
Pathogens
Pneumoviridae
Probiotics
Probiotics - pharmacology
Proteins
Solea senegalensis
Soles (Fishes)
Statistical analysis
Vegetable Proteins - pharmacology
Vibrio
Yeast
Yeasts
Yeasts (Fungi)
title Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innate%20immune%20response,%20intestinal%20morphology%20and%20microbiota%20changes%20in%20Senegalese%20sole%20fed%20plant%20protein%20diets%20with%20probiotics%20or%20autolysed%20yeast&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Batista,%20S.&rft.date=2016-08-01&rft.volume=100&rft.issue=16&rft.spage=7223&rft.epage=7238&rft.pages=7223-7238&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7592-7&rft_dat=%3Cgale_proqu%3EA470523765%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811162546&rft_id=info:pmid/27183997&rft_galeid=A470523765&rfr_iscdi=true